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The present report is one of a series of six reports, published simul-

taneously, which describe analyses and computational procedures for: 1) pre-

diction of the in-depth response of charring ablation materials, based on one-

dimensional thermal streamtubes of arbitrary cross-section and considering

general surface chemical and energy balances, and 2) nonsimilar solution of

chemically reacting laminar boundary layers, with an approximate formulation

for unequal diffusion and thermal diffusion coefficients for all species and

with a general approach to the thermochemical solution of mixed equilibrium-

nonequilibrium, homogeneous or heterogeneous systems. Part I serves as a

summary report and describes a procedure for coupling the charring ablator

and boundary layer routines. The charring ablator procedure is described in

Part II, whereas the fluid-mechanical aspects of the boundary layer and the

boundary-layer solution procedure are treated in Part III. The approximations

for multicomponent transport properties and the chemical state models are

described in Parts IV and V, respectively. Finally, in Part VI an analysis ,

is presented for the in-depth response of charring materials taking into ac-

count char-density buildup near the surface due to coking reactions in depth.

The titles in the series are:

Part I Summary Report: An Analysis of the Coupled Chemically Reacting

Boundary Layer and Charring Ablator, by R. M. Kendall, E. P.

Bartlett, R. A. Rindal, and C. B. Moyer.

Part II Finite Difference Solution for the In-depth Response of Charring

Materials Considering Surface Chemical and Energy Balances, by

C. B. Moyer and R. A. Rindal.

Part III Nonsimilar Solution of the Multicomponent Laminar Boundary Layer

by an Integral Matrix Method, by E. P. Bartlett and R. M. Kendall.

Part IV A Unified Approximation for Mixture Transport Properties for Multi-

component Boundary-Layer Applications, by E. P. Bartlett, R. M.

Kendall, and R. A. Rindal.

Part V A General Approach to the Thermochemical Solution of Mixed Equilib-

rium-Nonequilibrium, Homogeneous or Heterogeneous Systems, by

R. M. Kendall.

Part VI An Approach for Characterizing Charring Ablator Response with In-

depth Coking Reactions, by R. A. Rindal.

This effort was conducted for the Structures and Mechanics Division of

the Manned Spacecraft Center, National Aeronautics and Space Administration

under Contract No. NAS9-4599 to Vidya Division of Itek Corporation with Mr.

Donald M. Curry and Mr. George Strouhal as the NASA Technical Monitors. The

work was initiated by the present authors while at Vidya and was completed

by Aerotherm Corporation under subcontract to Vidya (P.O. 8471 V9002) after

Aerotherm purchased the physical assets of the Vidya Thermodynamics Depart-

ment. Dr. Robert M. Kendall of Aerotherm was the Program Manager and Prin-

cipal Investigator.
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ABSTRACT

A laminar nonsimi!ar boundary-layer procedure is described which yields

accurate solutions for a broad range of problems. In its current formula-

tion, solutions can be obtained for any equilibrium chemical environment with

specified rate-controlled reactions at the surface. It has been used to treat

a variety of ablating and nonablating surface boundary conditions including

coupled energy and mass balances. The formulation considers unequal diffu-

sion and thermal diffusion coefficients for all species in a particularly

convenient manner through a bifurcation approximation for binary diffusion

coefficients. The multicomponent viscosity and thermal conductivity of the

mixture are determined by use of Sutherland-Wassiljewa type approximations.

The procedure is readily applicable to inclusion of one-dimensional radia-

tion emission and absorption and a general nonequilibrium chemical model.

The procedure combines features of the general integral relations approach

with those of matrix solution techniques. Following the former, smooth func-

tions (in particular, cubic spline functions) are chosen to relate the princi-

pal dependent variables to their derivatives. This enables the attainment of

an accurate solution with relatively few entries into the conservation equa-

tions (3 to 4 place accuracy with 7 to ii spline points). From the latter,

the concept of treating the entire solution as a set of simultaneous, non-

linear algebraic equations is adopted. This technique results in linearized

coupling between all relations required to characterize the boundary layer,

and thus assures a general, rapid, and stable iterative convergence. As a

consequence, the damping of corrections has seldom been required. Computa-

tional speed appears to be an attractive feature based on the few comparisons

with other techniques which have been possible to date.
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AN INTEGRAL-MATRIX METHOD FOR NONSIMILAR

SOLUTION OF THE MULTICOMPONENT LAMINAR BOUNDARY LAYER

SECTION 1

INTRODUCTION

A computational procedure is described which is suitable for obtaining

accurate numerical solutions of the nonsimilar multicomponent laminar bound-

ary layer with arbitrary equilibrium or nonequilibrium chemical systems,

unequal diffusion and thermal diffusion coefficients for all species, radia-

tion absorption and emission, and a variety of surface boundary conditions

including intimate coupling with transient charring-ablation energy and mass

balances. A Fortran IV computer program has been developed in accordance

with this analysis with the exceptions that i) the chemical system is presently

limited to equilibrium, with or without selected rate-controlled surface re-

actions or surface catalyzed reactions, and 2) radiation absorption and emis-

sion is not currently permitted. This computer program, designated BLIMP,

for Boundary Layer Integral Matrix Procedure, is described in Ref. i.

The computational procedure has been developed while attempting to take

advantage of the most attractive features of other boundary-layer procedures.

In light of the application of the procedure to be adopted, certain specific

requirements seemed appropriate. In particular, minimization of the number

of "nodal points" required to obtain a solution was judged to be of prime

importance as a consequence of the relatively large times associated with

state calculations for a general chemical environment and, in the streamwise

direction, because of the desire to couple the boundary layer procedure to a

transient internal conduction or ablation solution.

For a given accuracy, the number of necessary "nodal points" in the sur-

face normal direction is controlled primarily by the nature of the functions

which relate the dependent variables (and their derivatives) to the indepen-

dent variable. Thus the continuous functions typically used in integral

relations approaches require fewer "nodal points"* than the discontinuous

functions implied by most finite difference approximations. In order to per-

mit relatively flexible profiles, sets of connected cubics were selected to

represent enthalpy, velocity, and elemental concentrations. The first and

second derivatives of these cubics were made continuous at the connecting

points. The advantages of such a'_pline fit" are considered, for example,

in Ref. 2.

*The term "nodal point" is meant to encompas_ the integral strips of Pallone 3

and the matching points used by Dorodnitsyn.



If the general integral relations approachis followed, weighting func-

tions must be selected. In the present study this selection was based pri-

marily on the complexity of the resultant algebra. Studies were made using

Dirac delta weighting functions (i.e., a differential approach*) and step

weighting functions similar to those used by Pallone 3 which indicated,** when

other aspects of the procedure were unchanged, no definite superiority in

terms of accuracy or stability. Because all of the complexities introduced

by the generalization of the thermodynamic and transport properties of the

system occur within a divergence term, step weighting functions produce

markedly simpler algebra and, consequently, were adopted for the present

procedure.

In the past when relatively large spacing in the streamwise direction

has been desired, iterative procedures have generally been used to assure

accuracy and stability. In many instances 5'6 these procedures have treated

the solution in a manner resembling those used for similar solutions but with

the addition of finite difference representations for the nonsimilar terms,

a procedure which eliminates the necessity of special starting techniques.

Using this basic approach, the specific treatment adopted in the current

study follows most closely the matrix procedure used by Leigh 6 wherein the

iteration is a consequence of the solution of a set of linear and nonlinear

algebraic relations. Whereas a special successive approximation procedure

was used by Leigh, the general Newton-Raphson technique was used in the pres-

ent procedure. This technique results in linearized coupling between all

relations required to characterize the boundary layer, and thus assures a

more general, rapid and stable iterative convergence.

The present document concentrates on the fluid mechanical aspects of

the problem and describes the basic numerical solution procedure. The pro-

cedures employed for calculating the equilibrium state of the gas and sug-

gested for including rate-controlled reactions are described elsewhere 7

since they are conveniently treated as subroutines to the basic boundary

layer computational procedure. However, the terms which are directly in-

volved in the boundary layer equations such as the "elemental source term"

which arises from kinetic considerations are included in the present develop-

ment. Similarly, radiation absorption and emission enters directly into the

conservation equations only as a net radiation flux term in the energy equa-

tion. The calculation of this term could also be conveniently accomplished

by a subroutine. A one-dimensional model for net radiation flux which rep-

resents an extension of the work of Cess 8 to allow an angular-dependent in-

cident radiation flux at the boundary-layer edge is presented in Appendix E.

4
*This correspondence is pointed out by Dorodnitsyn.

**The results of these studies are discussed in an appendix to this report.



Multicomponenttransport properties are basedon a newly developedapproxima-
tion described in Ref. 9. Modification of the conservation equations as a con-
sequenceof this approximation is described herein. Finally, the procedures
employedfor coupling to a transient charring ablation programare described
in Ref. i0.

Thegoverning differential equations for l_minar or turbulent flow are
presented in Section 2. The laminar form of the equations are normalizedby
a modified Levy-Leestransformation in Section 3. Themodification consists
of a coordinate stretching parameterwhich permits the establishment of an
efficient universal boundarylayer nodal network. In Section 4, the trans-
formedconservation equations are integrated and the connected-cubicfunc-
tional relationships are introduced through truncated Taylor series expan-
sions. Theprocedure utilized to solve these equations is described in
Section 5. First, the Newton-Raphsonlinear recurrence formulas are devel-
oped. A matrix reduction procedureis then described which takes full
advantageof the linear Taylor series expansionsand simplifies the gener-
alization of surface boundaryconditions.

In Section 6, comparisonsto other numerical solutions are shownfor
several uncouplednonreacting boundarylayer problems. Generally, 3-to 4-
place accuracy is obtained for 7-point boundary-layer solutions, and the
solution usually convergesin 3 or 4 iterations. Solutions for chemically
reacting boundarylayers are presented in Section 7.

SECTION2
BOUNDARYLAYERCONSERVATION EQUATIONS

In this section are presented the differential equations which govern

laminar or turbulent flow in a planar or axisymmetric compressible boundary

layer with mass addition, equilibrium or nonequilibrium chemical reactions,

multicomponent diffusion, thermal diffusion, and radiation. Unequal diffu-

sion and thermal diffusion coefficients for all diffusing pairs are in

accordance with the unified approximation presented in Ref. 9. The equations

derived are essentially an extension of those derived in Ref. ii to include

radiation, thermal diffusion, and unequal binary-diffusion coefficients. The

diffusion introduced by pressure gradients and body forces are neglected.

The standard definitions of time-averaged turbulent quantities and rela-

tive order of magnitude are employed (Refs. ii and 12). The turbulent trans-

port terms are expressed in the Boussinesq form, that is, eddy viscosity,

eddy diffusion, and eddy conductivity. Hence, all the terms in the equations

3



are time-averaged quantities and no need exists for using a superscript bar.*

In the order-of-magnitude arguments, terms of the following types have been

eliminated: i) triple correlations, 2) derivatives of turbulent correla-
0

tions parallel to the wall, and 3) correlations involving turbulent compo-

nents of molecular transport mechanisms.

A mass balance of an individual species in a unit volume results in the

relationship

_K

r
o

(i)

where s and y are the streamwise and normal coordinates, respectively,

u and v are the velocity components in the s and y directions, respec-

tively, K i is the mass fraction of species i, r ° is the radius of the

body in a meridian plane for an axisymmetric shape, a is zero for a flat

plate and unity for a body of revolution, p is the density, _i represents

the rate of mass generation of species i per unit volume due to chemical

reaction, PeDi is defined in terms of the correlation of the fluctuating

components of concentration and normal velocity, that is,

(pv) ' K.'
l

PeD i _Ki/_y
(2)

and Ji is the mass-diffusion rate of species i due to molecular processes.

When Eq. (i) is summed over all the species in the system, utilizing

_Ki =

i i

= 0

which results from the definition of mass diffusion, and utilizing

S _i = 0

i

*Accordingly, pv represents pv, not p v.



which results from conservation of mass,there results

1 BpUro_
Bs

r
0

+ __.P_x.= o (3)
By

which is the familiar global continuity equation.

When Eq. (3) is considered together with Eq. (i), the more conventional

species conservation equation is obtained:

BK i BK i B ( BK' )pu _-'_--"+ pv _-'- = _ POD ii By Ji + _i (4)

The streamwise momentum equation can be written as

u u E ulpu_+ pvT-'_y= _ p('_+ _M) _ -_"_
(s)

where P

Reynolds stresses of turbulent flow by

is the pressure and the eddy viscosity is defined in terms of the

pcM ][[_Z[___ (6)= - Bu/By

The momentum equation for forces and fluxes normal to the surface is

given by

(BP) _ (7)_Y s = rc

where r is the radius of curvature of a surface streamline.
C

The energy equation for this general system is

pu + pv pIcM +

(equation continued on next page)

5



(equation continued from previous page)

x .D. T

+ PeD. By - _- 7_i_ij
l

i i j

R_i - (8)

where H T is the total enthalpy (static plus kinetic)

U 2

H T = h +_-
(9)

h is the static enthalpy including chemical as well as sensible contribu-

tions

h = _, Kih i

i

(lO)

h. is the static enthalpy of species i
l

h, =
1

T

o + h°
CpidT I

(11)

T is the temperature, h9 is the heat of formation of species i, Cpi is
1

the specific heat of species i, _p is the frozen specific heat of the

gaseous mixture

_p = _ KiCp i
(12)

X is the thermal conductivity, R is the gas constant, xj is the mole

fraction of species j, _i is the molecular weight of species i, _ij is
T

the binary diffusion coefficient of species i into j, D i is the multi-

component thermal diffusion coefficient of species i, the turbulent enthalpy-

transport coefficient is defined by

_. Ki(Pv) 'h i '

i

pc H = - _ Ki(_hi/_Y)

i

(13)

6



r

and qr is the net one-dimensional energy flux towards the surface due to

radiation absorption and emission.* In Eq. (8) the turbulent contribution

to the DuFour effect (the double summation term) has been neglected since

significant diffusion thermo occurs only in the laminar region where tempera-

ture gradients are severe.

When the assumption of equal diffusion coefficients is made, a substantial

simplification of the problem results if the species conservation Equations

(4) are multiplied by Ski, defined as the mass fraction of element k in

species i, and the resulting terms are summed over all species (known

as the Shvab-Zeldovich transformation). When this is done, there is a re-

duction in the number of conservational equations from the number of species

(typically 20 to 50) to the number of elements (usually 2 to 6). In addition,

the resulting equations are simplified since the source terms are eliminated.

Furthermore, elements vary more smoothly across the boundary layer than do

the molecular species, and hence are better represented numerically. To illus-

trate, when all binary-diffusion coefficients are assumed equal and in the

absence of thermal diffusion, t,he Ji can be expressed by Fick's law

_K.

(14)
Ji = - P_I2 _y

Substituting this into Eq. (4) and performing the Shvab-Zeldovich transforma-

tion results in the following elemental conservation equations for the laminar

or turbulent boundary layer:

pu _- + pv _y - _y p(e D + _12 ) _--
(15)

where _ is the mass fraction of element k in the system defined by

-= S _kiKi

i

(16)

It has also been assumed that all eD. = eD"
1

When diffusion coefficients are not equal, Fick's law does not apply.

The diffusional fluxes, Ji' must then be expressed in terms of multicomponent

diffusion coefficients, _.
13

*A model for qr which allows an angular-dependent incident radiation flux at

the boundary-layer edge is developed in Appendix E.



Ji = _x.
___.I _ _n T

_i_jDij _y - DiT _y
j_i

or via the Stefan-Maxwell relations 13

x o n n1-- ] _y Ji + Di T _y

_Y /. P_ij Kj K i

]

(17)

(18)

Utilization of the Stefan-Maxwell equations in conjunction with the species

conservation equations is awkward even in the absence of thermal diffusion

effects, since the diffusional flux, Ji' is expressed implicitly in terms of

mole fractions and their gradients. Hence, use is often made of Eq. (17)

together with the multicomponent diffusion coefficients, for example, in

Refs. 14 through 16. However, each of the (IS-I) multicomponent diffusion

coefficients depends upon local concentrations and upon (I_-I)/2 symmetric

binary diffusion coefficients, _ij' where I is the total number of species

being considered.

A bifurcation approximation to binary diffusion coefficients introduced

by Bird 17 and utilized herein permits explicit solution of the Stefan-Maxwell

relations for Ji in terms of gradients and properties of species i and

of the system as a whole. The approximation can be expressed in the form:

_ij _ D/FiF j (19)

with D(T,P) a property of the given multicomponent mixture and Fi(T) a

property of the i th species in the mixture.* It is apparent when consider-

ing more than 3 species** that Eq. (19) is indeed approximate, since (Is-I)/2

diffusion coefficients, _ij' are replaced by I diffusion factors, F i-

Equation (19) should thus be viewed as a correlation equation for actual

binary diffusion coefficient data. The F i are determined for a given chem-

ical system by a least-squares fit of actual diffusion data.

*The effect of pressure can be absorbed entirely into the D since _i _ is
inversely proportional to pressure. It will be shown that the dominan{

temperature effect can also be absorbed into the D so that the F i are

nearly constants for a given molecular set.

**Eq. (19) is exact for a ternary system.
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The accuracy of the correlation was investigated by Bird 17 for a five

component mixture containing hydrogen and shown to be surprisingly good, the

maximum error in any _ii being 4 percent. In order to establish more gen-

erally the adequacy of the approximation, correlations were performed for

systems including a 16-component (120 _ii) C-H-O-N system. 9several chemical

These studies have demonstrated that Eq. (i0) has general applicability, and

represents the _. for nearly all diffusing pairs within 5 percent. The
13

largest single error in _ii obtained in these correlations has never ex-

ceeded 15 percent or so.

Introducing this approximation into the Stefan-Maxwell relations, it is

shown in Ref. 9 that the Ji can be expressed explicitly as

P_2 [%Zi _ _n _2

Ji = - _ [_ ÷ (Zi - Ki) _y

__Ki_ ( IFi d _n Fi _ 5 d _n _j)Fj _y_n T 1+ _ d _n T d _n --

J

+ Di T __n______T 1_y (20)

where Z i is a quantity which for unequal diffusion lies between a mass and

a mole fraction and is defined by

_ixi
Z.

l Fi_ 2

(21)

and _i and _2 are system quantities defined by

_I _ xjFj _2 -= Fj

J J

(22)

It can be seen from Eqs. (21) and (22) that _ Z i = i. When diffusion coef-

ficients are assumed equal, setting F i = 1 yields Z i = Ki, _i = i, and _2 = _-

In Ref. 9 it was observed that the F. are weak functions of tempera-
l

ture. Thus Eq. (20) can often be simplified to



L

I p_u2 F_Zi _ Ln _2] + D T _ _n TJi = - _--_ L_- + (Zi - Ki) By i By

(23)

Substituting Eq. (23) into the boundary-layer species conservation equa-

tion (Eq. (4)) and performing the Shvab-Zeldovich transformation yields 9 the

following conservation equations for chemical elements in a multicomponent,

laminar or turbulent boundary layer with unequal diffusion coefficients:

pu +pv -y = - Tg- + (_ - _) ByB_n U2" 1

(24)

where Kk is defined by Eq. (16) and

_k _ l_kiZ i

i

(25a)

4_k m l_ki_i

i

(25b)

The term _k requires some discussion. Introduction of the Shvab-Zeldovich

transformation eliminates the chemical production terms _i when the boundary

layer is everywhere in local equilibrium since q'k is then equal to zero. With

the introduction of nonequilibrium, the approach of Ref. 7 generalizes the term

"element" and results in an expanded (in terms of "elements", k) _ki array, tak-

ing advantage of all equilibrium aspects of the system. As a consequence, the

Ck may no longer equal zero and thus cannot, in general, be omitted from Eq.

(24). This general mixed equilibrium, nonequilibrium approach results in more

equations of the form of Eq. (24) than in the purely equilibrium system. Except

in the limit of all reactions being kinetically controlled, the number of equa-

tions of the form of Eq. (24) is, however, less than the number of molecular

_0
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conservation equations (Eq. (4)). The local state of the gas for this nonequi-

librium system is defined in terms of the expanded set of "elements". The pro-

duction or destruction rates, Ck' of these "elements" becomes a state property

and can be evaluated along with other local system properties.

It should be noted that the Shvab-Zeldovich transformation is still

possible without the approximation for _ij embodied in Eq. (19), but solu-

tion then depends upon (Ia-I) multicomponent diffusion coefficients, each

of which depends upon (I_-I)/2 symmetric binary diffusion coefficients and

upon concentrations of all species. Therefore, use of the approximation for

_ embodied in Eq. (19) should be looked upon as a computational convenience.
i]

At this point the multicomponent thermal diffusion coefficients, Di T,
T

still appear in the conservation relations. Theoretical equations for D i

are quite complicated 13 and these have to be solved at every boundary-layer

point since they are strongly concentration dependent. Therefore, a correla-

tion of binary thermal diffusion data was conducted 9 which yielded, upon gen-

eralization to multicomponent systems, the following simple relation:

D. T c tP_ 2

i _ _ (Zi - Ki)
(26)

T
with the empirical constant c t about -0.5. This approximation for D i

satisfies the requirement that they sum to zero, 13 the observation that they

are independent of fluxes, and the assumption that thermal diffusion of spe-

cies i should behave nearly as though it were in a system of species i

and a species representative of the mixture as a whole. The approximation

represents binary thermal diffusion data reasonably well (within i0 percent

or so, considering a wide range of molecular weights and variation of mass

fractions from zero to i00 percent). An accuracy study of multicomponent

T

D i has not, yet been accomplished. However, the generalizations which were

employed appear to be in basic accord with the approximate model for multi-

component thermal diffusion coefficients developed by Laranjeira. 18

Inserting this approximation into Eqs. (24) and (8) and performing all

summations yields the following relations for diffusive mass flux of species

i, Ji' diffusive mass flux of element k, ]k' and diffusive heat flux, qa'

respectively

11



F
Ji : -_ L_-7- ÷ (zi- _i)_-I

(27a)

(2Vb)

qa -Ip(eM + V)_(ue/2) + (k + -- _T (_h- 3 _T)

= By _nCp ) _7 + Pep _ p

"I } (27c)

where

--- _ZC _-= _Zh.
Cp i Pi i l

i i

Z i c t

_3 - _i _4 -= _n(_2T )

i

(28)

The elemental species conservation equation thus becomes

pu _-- + pv _-- = _ PeD _ Jk + _k

while the energy equation can be expressed as

(29)

pu _ + pv by - By - qa + qr

Equations (27a) through (27c) are derived in Appendix A. For assumed equal

diffusion coefficients, _3 = i/_, _p = _, and _ = h. _en the_al diffu-

sion is to be neglected c t = 0 and _4 = %n U2.

Equations (3), (5) , (7), (29) , and (30) comprise the boundary-layer

conservation equations incorporating the approximations for unequal the_al

and multicomponent diffusion coefficients e_odied in Eqs. (19) and (26). It

12
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should be emphasized that the numerical solution procedure described in a

later section is not dependent upon the use of these convenient approxima-

tions.

Any consistent set of boundary conditions can be applied which yield, in

effect, U/Ue, HT, and the _ and their first derivatives at the edge of the

boundary layer, and wall values of U/Ue, mass flux, H T (or its gradient), and

the _ (or their gradients). Specific boundary conditions will be introduced

in Section 3.

The mathematical specification of the boundary-layer problem is completed

by introduction of the remaining multicomponent transport properties, the equa-

tion of state for a gaseous mixture, the equilibrium relations, and the kinetic

relations. These are described in Refs. 7 and 9.

SECTION 3

THE TRANSFORMED NON$IMILAR LAMINAR BOUNDARY-LAYER EQUATIONS

From the original formulations of Blasius, a continuing effort has been

expended in the search for more general means of reducing the partial-differ-

ential equations of the boundary layer to total-differential equations. Bas-

ically, this involves the search for a new coordinate system (_,_) related

to the original system (y,s) and certain of the dependent variables, in which

the _-wise variations of functions of the dependent variable either vanish

or become of second order. A successful similarity transformation, as this

is called, results in _-derivatives vanishing, but this occurs only under

certain conditions which are generally quite restrictive. Currently, the

most popular transformation represents a combination of the Levy and Mangler

and the Howarth-Dorodnitsyn transformations. This particular form was sug-

gested by Lees (Ref. 19) among others, and is known by a variety of names

including Lees-Dorodnitsyn, Levy-Lees, Mangler-Dorodnitsyn, and Dorodnitsyn-

Stepanov. This transformation is as follows:

S

f _ dsg = UePe_er O

O

(31)

rogUe f Y

= _ j p dy
O

(32)

where, in this and subsequent equations, the subscripts w and e refer,

respectively, to the wall and to a reference condition which can be taken as

the boundary-layer edge in the absence of an entropy layer (to be discussed).

13



In this section, a slightly modified form of this transformation is

applied to the laminar form of the boundary-layer conservational equations

presented in Section 2. Although the boundary-layer equations remain partial-

differential equations when the nonsimilar terms are retained, the Levy-Lees

transformation is still quite advantageous, since it aids in the specifica-

tion of the boundary conditions, it eliminates the global conservation equa-

tion from the set of relations to be solved, and it normalizes the boundary-

layer thickness. In addition, the nonsimilar terms are often small; hence,

they can be investigated individually and eliminated for certain classes of

problems.

If the conventional Levy-Lees transformation embodie_ in Eqs. (31) and

(32) is utilized, the transformed boundary-layer thickness is uniform for a

similar boundary layer. However, when the boundary layer is highly non-

similar (e.g., as a result of large blowing or suction, severe pressure gradi-

ents, or surface discontinuities) the transformed boundary-layer thickness

can vary by a factor of two or more. Therefore, it is useful to normalize

the boundary layer further by stretching the _ coordinate:

_" = _ _ = ri (33)

(zH

where _H is a function of _ only and is determined implicitly during the

numerical solution. This makes possible the efficient use of a universally

applicable nodal network which can be chosen a priori once and for all. The

use of such a universal nodal network is highly desirable as the linearity of

a large body of equations (Taylor series expansions of primary variables)

during the numerical solution procedure is retained. In addition, it reduces

the variation of boundary-layer parameters along a grid line from one stream-

wise station to the next.

Since a new variable _H(_) is introduced, an additional relation is re-

quired. This is conveniently supplied by constraining an internal nodal point

near the boundary-layer edge, _c' to have a specified streamwise velocity,

c, near (but something less than) the edge value:

f'l_c = cf'l_e (34)

14
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where f is the stream function defined as

fu fof fw = =
o o

(35)

m

and the prime denotes partial differentiation with respect to _, so that

u (36)
f' = _H _-

e

To illustrate, selection of _e = 4.0, _c = 2.4, and c = 0.90 yields eH _ 1.0

for the Blasius problem (incompressible flow along a flat plate at zero in-

cidence with no mass addition). The f'l_e is utilized in Eq. (34) in anti-

cipation that the u/u e may not be unity at the edge of the boundary layer

for superorbital reentry problems involving an entropy layer or nonadiabatic

flow field.

In order to illustrate further the procedure, two extreme velocity dis-

tributions are compared in Figure 1 to the Blasius solution. The profiles

shown are those for a boundary layer near separation and one near blowoff.

These were calculated using the integral matrix method for numerical solution

of the boundary layer (described later). It can be seen that by the use of

the transformation (Eq. (33)) together with the arbitrarily chosen constraint

(Eq. (34)) that the boundary-layer edge occurs at about the same value of

for the three problems. It should be noted that this is accomplished with

little mathematical complexity; only two terms involving derivatives of _H

appear (both in the momentum equation).

Variation of eH with Reynolds number (proportional to _) is shown in

Figure 2 for a nonsimilar boundary layer with constant blowing and one with

constant suction. These results were also obtained using the integral matrix

technique. The behavior of _H is indicative of the increase (and decrease)

of the D at the edge of the boundary layer. The desirability of the stretch-

ing transformation is made apparent by this example. Without the use of the

transformation to _, the choice of an _max sufficiently large to charac-

terize accurately the boundary layer at large distances from the leading edge

would be inefficient near the leading edge. Furthermore, it would be re-

quired to make an estimate for _max as it is not known a priori.

15
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Transformation of the independent variables

Lees variables _ and

the operator

s and y into the Levy-

is conveniently accomplished through the use of

0u_,.,0v_. 00...'..ro'"[,''_ - (_-_")-_]
In addition, the partial derivatives are given by

(37)

(_ y PeUe_ero (_ _ y

K

(_) °ere°C_)s (2_)_/_ _
(39)

where

(40)

(41)

Equations (37) through (41) are derived in Appendix B.

Utilization of Eqs. (37) through (41) results in the following trans-

formed equations for diffusive fluxes and conservation of momentum, elemental

species, and energy in a laminar compressible nonsimilar boundary layer with

mass addition, chemical reactions, and unequal diffusion and thermal diffu-

sion coefficients (using the approximations embodied in Eqs. (19) and (26)).

These equations are derived in Appendix B. Throughout the remainder of

this document the bar is dropped from _, _ and the prime refers to partial

differentiation with respect to _ except when noted otherwise:

Diffusive flux of i th species

Ji = _*Ji* (42)

where Ji* is a normalized diffusive flux of species i

j i, = _H_C [Z i, + (Z i _ Ki)_4, ]

(43)

18



b

O
_* is the normalizing parameter defined by

K

_. = PeUeUero

C is defined by

(44)

(45)

n

and Sc is a system property defined by

_i_
Sc -

P_ 2

The Sc is a Schmidt number based on the self diffusion coefficient for a

ficticious species representative of the system as a whole.

(46)

Diffusive flux of k th elemental species

Jk = e*Jk*

where Jk* is a normalized diffusive flux of element k

C

= +

(47)

(48)

Diffusive heat flux

where qa*

qa = U*qa*

is a normalized diffusive heat flux

C f' f'' Ue + CpT'

qa* = - _ _H _ Pr
c t RT )

J

C f'f" + _P T' + i____ _, - + -- T'

= - --_ U e _ P r S--c U 1 _ 2
_H 2

+ ctRT_ + (_- h + ctRT_3)_4' )I

(49)

(50)
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and Pr is the Prandtl number based on the frozen specific heat

Pr _ Cp_

k
(51)

g

Streamwise momentum equation

_] d_ H

a H d_

ru/ )II+ P'_H o e
_H(2_)_/_ p dy - _f'_

o Y

5f, _f f'_ d _n a H 1= 2 f' _ _n _ f" _ _n _ d _n _ ] (52)

where _ is the streamwise pressure-gradient parameter

d_n u

= 2 e (53)
d_n _

Normal momentum equation

P Ue (2_) i/2 (f,)2' - = 0 (54)

aHrcr o

In the present study it will be assumed that the pressure is constant across

the boundary layer. Equation (54) is therefore replaced by that statement,

and the partial derivatives of pressure in Eq. (52) can be changed to a total

derivative. Also, from the compressible Bernoulli equation, Eq. (52) be-

comes

Streamwise momentum equation (P = P(_) only)

rc l( °e )ff" + + 8 eH _ --- f'_
LaH P

d _n aH)
= 2 f' _ f' f" _f f,2 (55)

_n _ _ _n _ d _n
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Energy equation

fH 4 + E-qa* + qr* I' _n [ HT _ _n
(56)

_ihere qa* is the normalized diffusive heat flux away from the surface given

by Eq. (50) and q_ is the normalized radiant heat flux toward the surface

qr* = qr/_* (57)

where _* is given by Eq. (44).

Elemental species equations

!

= _ _n_ _f ) (58)_n_

where j_* is given by Eq. (48). The transformation also yields the follow-

ing relations between fw and PwVw (see Appendix B):

dfw 1OwV w = - C_* fw + 2_ d--_i
(59)

where e* is the normalizing parameter defined by Eq. (44) or, equivalently

pjj fw = - (2_) -½ (60)

o PeUe_eroa

When certain groupings of parameters are constant so that the similarity

assumption is valid, the terms on the right-hand side of the conservation

equations (Eqs. (52) or (55), (56) and (58)) vanish, in which case the con-

servation equations become ordinary differential equations. It should be

emphasized that the equations as presented herein are equivalent to the

corresponding boundary-layer equations presented in Section 2. That is,

no similarity assumptions have been made in their development.

Equations (44), (53), and (60) for _*, 8, and fw' respectively, are

indeterminant at the stagnation point of a blunt body. Special forms for

these equations valid at the stagnation point are shown in Appendix C to be

given by

dUe/ 1 ½* = Pete d-_/ 8)o
s O (44a)

fw = -(PwV# e*) O (60a)
O
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where for Newtonian flow

_o = i/(a + i) (53a)

and

 UeL_"-]o = (2P/0)

with Ref f an effective nose radius taking into account the shock shape.

Alternatively, _o and (dUe/dS) o can be computed from curve fits of the in-

viscid pressure distribution.

In addition, in order to improve the accuracy of numerical integration

procedures in the nose region, _ and fw can be computed by the following

relations

s 2 K +s

Jg - 2(_ + 1)
o

I e,e dC"''" (31a)

s

(291-% ffw = - (_ + i)

o

(60b)

which take advantage of the fact that Ue/S and ro/S vary more nearly

linearly in the stagnation region than do u and r . Equations (31a) and
e o

(60b) are also derived in Appendix C. Of course, the original Equations (31)

and (60) are more applicable on the afterbody.

The surface boundary conditions can assume numerous forms. The simplest

of these are the requirement of zero slip at the surface which yields

f ' = 0 (61)
w

and assignment* of numerical values for PwVw (or fw ) , h w (or Tw), and _kw.

In the event that PwVw is assigned, the fw can be calculated by use of Eq.

(60). Alternatively, Eq. (61) can be utilized together with the assignment

of wall mass diffusive fluxes, Jkw, and h w (or T w) or with the assignment

*It is physically unrealistic in most cases to assign Kv when diffusion
_W

coefficients are unequal since the contribution to _ by preferentlal
diffusion of the . _wvarlous elements to the surface is not known a prlorl.
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of wall mass diffusive fluxes and the requirement that the surface material

either be in equilibrium with the gas adjacent to the surface or satisfy

surface reaction kinetic relations. (Surface chemistry considerations are

discussed in Ref. 7.)

Additional wall boundary conditions of interest admit the addition of

chemically active species arising from the pyrolysis of an internally decom-

posing material, surface combustion or phase change, and liquid-layer removal.

In this case PwVw (and thus fw by means of Eq. (60)), f_, HTw and _kw

are supplied through surface chemistry considerations, the zero slip condition

(Eq. (61)), an energy balance, and elemental mass balances.

The surface energy and elemental mass balances are supplied by transient

internal conduction solutions such as those described in Ref. 20. The proce-

dure for accomplishing this is discussed in Ref. i0. The resultant equation

for the surface energy balance is given by

& hg+ c
- / m*r_h.z - (PwVw)_nw.... - qa*

w

* = 0 _u2;+ q_ - qcond
W

where m is the mass flow rate per unit area and h the enthalpy of gas
g g

which enters the boundary layer without phase change at the surface (e.g.,

* is a normalized • given by = _J_* (typical),pyrolysis gases) , _g g mg*

mc is the mass removal rate per unit area and h c the enthalpy of surface

material (e.g., char) removed by chemical reactions or phase change. • is

the mass removal rate per unit area and _ the enthalpy of that material which

is removed in the condensed phase (e.g., by melting with subsequent liquid run-

off or by mechanical spallation), h w is the enthalpy of the gas phase at the

wall, q_ is the normalized diffusive heat flux away from the wall (Eq. (50)

evaluatedWat the wall), qrw is the net radiative flux to the wall (including

reradiation from the surface), and qcond = Xw(_T/_Y)w is conduction into

the surface material (with k w the thermal conductivity of the surface mate-

rial). The elemental mass bala,:ces are given by

- (PwVw)* -j* = 0 (63)g gk c c k k w

where the subscripts g, c, r and w and the asterisk have the same meaning

and j_ is the normalized diffusive net mass flux of elemental species k

away from the wall, given by Eq. (48) evaluated at the wall.

To illustrate a simplified special case for this surface boundary condi-

tion, consider the case of steady-state ablation of a homogeneous material
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such as carbon, neglecting mechanical spallation and radiation absorption

and emission with the exception of reradiation from the surface. In this

case mg = 0, mr = 0, mc = PwVw ' qr = -OewTj, Kkc is unity for carbon and

zero for nitrog_, and qcond = mc(_c - h ) where h = 0 if the carbon is

initially at the base state of 298°K. Therefore Eqs. (62) and (63) become

(_wVw)*hw+ q_ + a_wTw_l_* = 0 (64)
W

for the energy balance and

(PwVw)*(_ - i) + j* = 0
w Cw

(PwVw) *_w + j* = 0_w

(65)

for elemental species balances for carbon and nitrogen, respectively.* In

the absence of mechanical removal, equilibrium of the gas phase at the sur-

face can be satisfied by considering any one of the equilibrium relations,

for example

(1/3) _n P - (Tw) = 0 (66)
C3 w KPeq

where PC is the partial pressure of C 3
3w

the equilibrium constant for the reaction

at the wall and K (Tw)
Peq

is

C(s) -_ (I/3) C 3 (67)

Eqs. (64) through (66) together with Eq. (61) comprise the complete set

of surface boundary conditions for this specific example of steady-state

carbon ablation.

*It is necessary to consider individual elemental species balances for only

one less than the number of elements (see footnote at bottom of page 27).
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Returning to the general problem, edge conditions of interest admit the

possibility of an entropy layer:

f'edge = aH [_e (f'_)l

- - edge

fI!

edge

HTedg e

H' = 0

Tedge

e
_H f' df

I ] edge

HTedge ]actual

I
2

(68)

(69)

edge = _edge actual

_edge = 0

(70)

where the subscript "e" refers to a reference condition, conveniently taken

as the f = 0 streamline (see Appendix D) and the subscript "edge" refers

to _edge chosen to be outside of the boundary layer but possibly in the

entropy layer. When there is no entropy layer, the reference condition e

can be considered as the edge condition, e = edge. In this case, Eqs. (68)

simplify to:

fedge = fe = _H 1f" = f" = 0
edge e

(71)

In the next section, the boundary-layer equations and boundary conditions

presented in this section are cast into a form suitable for numerical solution

by an integral matrix method.
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SECTION 4

THE LAMINAR BOUNDARY LAYER EQUATIONS

IN INTEGRAL MATRIX FORM

The solution of the transformed boundary layer equations presented in

Section 3 utilizes an integral matrix method which has been developed spe-

cifically for the solution of chemically reacting, nonsimilar, coupled bound-

ary layers. In this procedure, the primary dependent variables f, HT, and

and their derivatives with respect to _ are related by Taylor series

expansions such that f', HT, and _ are represented by connected cubics

with continuous first and second derivatives at the junction points (commonly

called a spline fit). Primarily for convenience, the conservation equations

are integrated using a weighting function which is unity between adjacent nodal

points and zero elsewhere. The linear Taylor series expansions together with

linear boundary conditions form a very sparse matrix which has to be inverted

only once for a given problem. The nonlinear boundary-layer equations and the

nonlinear boundary conditions are then linearized, the errors being driven to

zero using Newton-Raphson iteration.

In this section, the Taylor series expansions are presented. The bound-

ary-layer equations are integrated, and the integrals which appear are also

expanded in Taylor series. The resulting equations are precisely those which

have been programmed for solution on high-speed digital computers to repre-

sent a coupled chemically reacting boundary layer such as surrounds an ablating

heat shield during superorbital reentry. Special cases corresponding to a

nonreacting (homogeneous) boundary layer and to an incompressible boundary

layer are also discussed. The procedure utilized for solving the sets of lin-

ear and nonlinear algebraic equations developed in this section are presented

in Section 5.

Consider the boundary layer in the region of a given station s as being

divided into N-I strips connected by N nodal points. These nodal points are

designated by Hi where i = 1 at the wall and i = N at the edge of the

boundary layer.

Consider a function p(x) which with all its derivatives is continuous

in the neighborhood of the point x = a. Then, for any value of x in this

neighborhood, p(x) may be expressed in a Taylor series expansion as

p(x) = p(a) + p' (a) (x- a) + p"(a) (x- a) a
i'. 2'.

+ p"'(a) (x- a) 3 + P .... (a)
3' 4'.

(x- a) 4 + ... (72)
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o.

Considering the point a as _i and the x as _i+l

Pi+l = Pi + p[6_ + Pi + Pi + Pi 24 "'" (73)

where

6_ = Di+l - Di (74)

=, ,,, HTi, ' .,,
The Pi can be considered to be any of fi' _i' f_' fi • HT." HT." _k "

l l i

k." or .. To illustrate:
l l

f, = f! + f!, 60 + f!,, _ + f!,,, 6__ + (75)
i+l x l l 2 • 6 " " "

Since the highest derivatives of the dependent variables which appear in the

boundary-layer equations are fi'_ H'' and K_[, it is reasonable to truncate• T i

the series at the next highest derivative and to consider that derivative as

being constant between _i and _i+l' that is:

f,,, _ f_,,
i+l

fllll

i i+l 6?

HII _ II

Ti+ 1 HT i
,Hill I (76)
i T:+.±± 6T]

i+l i

iKki+l 6_

The following set of E3 + 2(i + _(N - i) linear equations are thus obtained

where K is the number of elemental species minus one* and N is the number

of nodal points across the boundary layer:

- fi+l + fi + f_6D + f"z _ + f!"1 _8 + f"'i+l 6__24 = 0 (77)

*For example• if 4 elements C, H, O, N are under consideration, K = 3.

Conservation of the remaining element is supplied through overall mass

balance.
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,,6-_3_ ,, _ 0- Pi+l + Pi + p[6_ + Pi + Pi+l 6 =
(78)

, + ,, 6__+ ,, __n = 0
- P[+I + Pi Pi 2 Pi+l 2

(79)

where in Eqs. (78) and (79) the Pi represents f_, represents HTi, and

represents each of the K Kk."
1

Thus, between each i and i+l the f is represented as a quartic;

the f', H T and _ are represented as cubics; and the f" , H T' and _ are

represented as quadratics; whereas the f"', H_' and K_' are considered to

vary linearly and the f .... , H_" and _" are considered to be constants be-

tween each pair of _-stations. Of course, all of these functions with the

exception of f''", H T''' and K_" join continuously at the nodal points.

Herein lies one of the major distinguishing features of integral methods in

general and of the integral matrix method in particular. Conventional finite

difference methods are generally based on a representation which is not too

unlike the first term in a Taylor series expansion and thus yield discontinu-

ous functions. Integral methods generally use smoother functions and hence

can be made to yield comparable accuracy with far fewer nodal points. This

is extremely important for a chemically reacting boundary layer since the

state of the gas (the computation of which is not trivial) must be determined

at each nodal point during each iteration. In the past (e.g., Ref. 3) inte-

gral methods have employed high-order polynomials from the wall to the

boundary-layer edge to obtain smooth profiles for f', H T and Kk" The

cubic spline functions employed herein are believed preferable as they are

usually better behaved.

The momentum, energy, and elemental species equations are integrated

at constant _ between _i-i and Di to yield:

Momentum equation:

i

Jil [cllff" d_ +

i-i

i i

0e_-- d_ - 8 f'edD

-i -i

1

_ Ln _

-i

i

f" _ _n __f_)d_- 2 /

i-i

d _n _H
f,e

d_n _
d_ (80)
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Enerqy equation:

i

/
i-i

Eq +c,.]
r i-i _i i ( _HT= 2 f' _ _n

-i

(8Z)

Elemental species equations:

i

i-I i-i
i i( _%+_"_i %d_ = 2_1 f_n_ _ d_

_ _n _

(82)

This, in effect, is a square-wave weighting factor of unity between i-1 and

i and zero elsewhere. This is equivalent to the step-function weighting fac-
3

tor I,_ My Pallone. As discussed in .Appendix F, the primary advantage of

this type of integration is algebraic simplicit_ the complex terms in the

energy and elemental species equations (the q_, q_, and j_) being divergence

terms. The use of smoother weighting functions, such as those utilized by
4

Dorodnitsyn, would add considerable algebraic complexity and do not appear

warranted on the basis of studies described in Appendix F which indicated

that square-wave weighting functions and Dirac delta functions (i.e., a dif-

ferential approach) yield comparable results as long as equivalent smooth

functions are used to relate the primary variables to their derivatives.

The integral of fp', where p is f', H T or _, can be expressed

as

i i i

[] ffp' dq " f P - f'p dq

i-_ , ___
I-i

(83)

The integral of f'p can then be expressed by expanding in a Taylor series

about i
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i

i

f p d_ ft -- Iipi_ (flPi+ f':_piliX2:

11

+ (fi Pi + 2f" ' f"' 6---qsi Pi + Pi ) 3:
i

- (f_p_"+ 3f':ipi"+ 3f"'iPi+ _'"'_Pi) 4:

"'+ 6_'"i 4f,,,,' _-_+ (4f'_ Pi i P + Pi )i 5.'

- (10q" p_'"+ 10f...." _ ....... ...i Pi ) + 20fi Pi 6__ +• 7:
(84)

where, consistent with the truncation of the Taylor series employed earlier,

all derivatives greater than f!"'1 and Pi"' have been dropped. Utilizing

again Eqs. (76) to eliminate p_', Eq. (84) becomes

_i i f' _- f' f,, f,,,p d_ i XPI + i' XP2 + i" XP3 + f'"i-i XP4

-i

(85)

where

XP 1 6N Pi - Pi + Pi 8 P_"-I 24

XP2 " -6D2 _ - Pi _ + Pi 120 + PI'I

(Pi ,n_!!a+ n_!L_+ s__i)XP 3 - 6q" _-- Pi 120 P[' 420 P['-i 504

XP4 = 6r13 "_"- P± + P_ 504 Pi-1 252

For the axial derivatives, logarithmic two- and three-point difference

relations are utilized, namely

(86)
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dO = do( )L + dl( )L-I + d2( )_-22 d_n _ (87)

where ( )L-1 refers to the previous streamwise station, and

2 2

d O - d I = d 2 = 0 (88)
&L-I _ &Z-I

for two-point difference and

_,A2,_l + _A2,_2 _,A,6_ 2
d o = 2 d 1 = - 2

LA_-I _AL- 2 _A__ 1 l-l&_-2

d 2 = 2 _ &_-l

_&_-2 _-l&_-2

(89;

for three-point difference where typically

_6/_1 = _n _ - _n _-i = _n (_/_L_I) (90)

The three-point difference relation is utilized unless a similar solution is

desired (in which case d o = d I = d 2 = 0) or unless the point in question is

the first point after either (i) a similar solution or 2) a discontinuity

(e.g., where the body changes shape abruptly, or where mass injection is sud-

denly terminated).

Similar approaches have been utilized previously in finite difference

procedures, for example, by Smith et al 5 and by Leigh. 6 Integral methods,

on the other hand, have generally integrated the boundary-layer equations in

the streamwise direction (e.g., Pallone3). The present approach is considered

preferable since the streamwise derivative terms are generally small, and

hence are conveniently treated as forcing functions. This avoids the diffi-

culty sometimes experienced during integration when the streamwise step size

is too small (see Ref. 6).

Applying Eq. (87) to the streamwise derivative terms
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i( )2 _ f' _- P' _f d_]

J..

i-i

i

f
i-i

f' (do P + d 1 P_-I + d2 PL-2 ) dR

i

f
i-i

P' (do f + dl f£-i + d2 fL-2 ) dN (91)

where again this relation applies for the three cases where p is equal to

f',H T and _. Utilizing Eq. (83) "yields

i i

2 f I f' _P - P'_f5_n _ _ Ln _ } d_ = 2d0 f f' p d_

i-i i-i

/i i '
f' PL-I dq + d fl-1 p d_

-i

i i

f f+ d2 f' PL-2 dR + d2 f£-2 p dR

i-1 i-1

[ 1- do f P + dl fz-1 p + d2 fz-2 p

i-1

(92)

Noting that each of the five integrals in Eq. (92) is of the same form as the

integral expanded in Eq. (84) by means of Taylor series

i [ f P +dl fL-i p + d2 fL-2 Pl i

i-i

(equation continued on next page)
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(equation continued from previous page)

where

with

+ 2do (f_ XPI + f"l XP2 + f_''i XP3 + f"'i-1 XP4)

+ (f[ ZPI + f!'l ZP2 + f'"
1 ZP3 + f"'i-i ZP4)

+ (Pi _l ÷ P[ zM2 ÷ p[' _3 + P['-I_4 )

YPIZP 2 = -6D _ _

i YPIZP3 = 8_3 8 - YP2 _ + YP3 _ + YP4 )120 420 504

YPIZP4 = 8_3 24-- - YP2 _0 + YP3 56-_504 + YP4 6--_)252 j

(93)

(94)

YPI = dl P_-l,i + d2 P_-2,i

32 = dlP_li +d2P_2i

YP3 = dl p'' + d2L-l,i Pi'-2,i

YP4 = dl p'' + d2 "L-l,i-i PL-2,i-i

(95)

and ZM I, ZM2, ZM 3, and ZM 4 are equal to ZP l, ZP 2, ZP 3, and ZP 4, respec-

tively, for the special case that p = f'.
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Following the same procedure

i

f d _n _H2 f'_ d _n

i-1

d o +

+
dl_H_ -1 d2_H_ -2

_H
q ÷ flxP2

+ f'"l XP3 + f'"i-1 XP41

Pi = f!1

(96)

where use has been made of the fact that the coordinate stretching parameter

_H is a function of _ only.

Finally, it is necessary to evaluate the integral of the density ratio

which appears in the momentum equation and the integral of the elemental

source term which appears in the elemental conservation equation. Approximat-

ing pe/p as a cubic between i and i-l, an exact integration of the result-

ing approximate integral yields

i Pe (P.._ee Pe ) (PePi PEP[-1 )_oi- 
-1

Similarly for the integral of _k

(97)

These approximations are not quite as good as the approximations for f', H T

and _ since continuity of derivatives is not guaranteed at the nodal points.

Utilizing Eqs. (83) through (98) the boundary-layer equations (Eqs. (80)

through (82))become

Momentum:

'+ f,

H
(i + do) if + dl f_-I + d2 f_-2)

i-i

(equation continued on next page)
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(equation continued from previous page)

, p:

+ _ c_H L\ Pi Pi'is

i + _ + do

f"' XP41 = f:
+ i-i Pi l

+ f" XP 2 + f_'XP 3
i

- 2
i ,,, ZP
f_ Zp I + f" ZP 2 + fi 3i

f'" Zp4_ = 0
+ i-i Pi = f[

(99)

where

i

__ q: + q_ + H t I(I + do) f + dl fL-i + d2 f_-11_ i-I

f,,, XP4_
. f"' XP 3 + i-i Pi

- (l + 2d0) _f[ XPI + fi XP2 + i

_f_ z'1+ f"z'2+ f"' z,3+ f,,, zP,_. i i i-i Pi = HT i

Zp I + H' ZP2 + H" ZP3 + H" ZP4_
_H Ti T i Ti-i Pi = f_

- Ti

q_ and q_

= HTi

= 0

are given by Eqs. [50) and (57), respectivelY"

(loo)
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Elemental species:

E *+- 3k i-1

+ _H _k i _ki_ 1 2 - 0k i _ki_ 1

-(i + 2d_) Ef[ XPI + f_'1XP2 + f"'i XP3 + f"'i-i XP41 Pi = Kk.

1

- E fl ZPI + f"l ZP2 + f"'i ZP3 + f'"i-i ZP41
Pi = _k.

1

] 0_l+_ _2+_ _3+_ _4 =f:
i i i i-i Pi z

(i01)

where j_ is given by Eq. (48).

The boundary-layer equations (Eqs. (99) through (i01)) are applicable to

the problem of the nonsimilar chemically-reacting boundary layer with unequal

diffusion coefficients, thermal diffusion, entropy layer, radiation absorp-

tion and emission, and rate-controlled reactions, coupled point by point with

a charring ablator solution. In the absence of thermal diffusion c t is set

equal to zero. When the diffusion coefficients are equal, _k = _' M1 = i,

_2 = i/_3 = _' _ = h, and _p = _p. When the boundary layer does not react chem-

ically, the elemental species equation is inconsequential. Finally, if the

boundary layer is incompressible or if Crocco relations are utilized only the

momentum equation is needed.

Before discussing the procedure for solving the equations developed in

this section, it is appropriate to discuss briefly the thermodynamic and

transport properties employed in the solution procedure. These subjects are

treated in considerably more detail in Refs. 7 and 9, respectively.

The state at each node is determined with a general purpose chemical

equilibrium subprogram of much the same form as those described in Refs. 21

and 22. State derivatives are determined by the same routine. Enthalpy and

specific heat values are obtained through accurate curve fits of JANAF or

other reliable thermochemical data.

In the present formulation, transport properties are determined as fol-

lows. The _ij and D'TI are calculated using the approximate Eqs. (19)

and (26), respectively. The D is given by

36



c

= 2.628 x i0 -a T(T/_ref) ½

p 2 _(z,z)*

Ore f _re f

(cme/sec) (102)

0

with T in °K, P in atmospheres, and o in A. The subscript "ref" refers

to a reference species (often 02 , but conceivably fictional). D is thus the

self-diffusion coefficient of that species. The F i are determined by a

least-squares correlation of _ij"

The viscosity of the mixture is obtained from an approximate relation of

13
the Sutherland-Wassiljewa type

where _i

i

is the viscosity of species i given by

(103)

5

i = 6T*. P_ii (104)
ll

and

RT_i _ x.

_,I_ (105)

_ = 1 + 1.385 Pxi_ i . . _ij

23

with the 1.385 an empirical constant suggested by Buddenberg and Wilke.

The mixture thermal conductivity, k, is obtained as the sum of a mona-

tomic thermal conductivity and a contribution from internal degrees of freedom:

= lmono + lint (106)

The lmono is determined by a relation similar to that for

xm°n° = _ xm°n°l _i

i

where xmono is the monatomic thermal conductivity of species i
1

lmono 15 R
z - 4 _i ui

(lO7)

(108)
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and

R_ i
-7 1 + 1 065 x 1 385-

_i = " " Pxi_ i _ij

j_i

(109)

with the 1.065 being suggested by Mason and Saxena. 24 The I int

25
using

is computed

lint i_ xi(l_ Im°n°)

= i - (ii0)

it
• _ii j _ij

where

_ lmono _i ( 5 R )li i = P_ii _- Cpi 2 _i (iii)

SECTION 5

SOLUTION OF THE BOUNDARY-LAYER EQUATIONS

IN INTEGRAL MATRIX FORM

The solution of the boundary-layer equations presented in Section 4 to-

gether with the boundary conditions such as those presented in Section 3 is

accomplished by Newton-Raphson iteration. In this section these equations

are put into a form suitable for solution by this procedure. The resulting

equations are then written in matrix form, and a method is presented for their

solution suitable for coupling with an internal conduction solution. The pro-

cedure attempts to minimize computational time and computer storage require-

ments.

In order to illustrate the Newton-Raphson method consider two simultane-

ous nonlinear algebraic equations

F(x,y) = 0 G(x,y) = 0 (112)

the solution for which is given by x = _, y = _. D_fine x and Ym
th m

the values of x and y for the m iteration. The desired solution

f(x,y) can be expressed in a Taylor series expansion

as
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o

bF(Xm,Y m)

0 = F(x,y) = F(Xm'Ym) + (x - Xm) bx

bF (Xm,Y m )

+ (_- Ym ) by + "'"

bG(Xm,Y m)

0 - G(_,y) - G(Xm'Ym) + (_ - Xm) bx

(113)

bG (Xm,Y m )

+ (_- Ym ) by + "'"

The Newton-Raphson method consists of replacing (x, y) by (Xm+1, ym+z) on the

right-hand-side of these expressions, neglecting nonlinear terms in Xm+ I - x m

and Ym+z - Ym" This yields the set of recurrence formulas

bF(x m,ym ) _F(Xm,Ym)
,\Y + Av - - F(Xm,Ym)
-'-m _x _m By [

_G (Xm, ym) _G (Xm,Y m) I

_Xm _x + _Ym by _ - G(Xm'Ym) ]

(114)

where

- x _ - Ym (115)_Xm Xm+l m 3Ym Ym+ 1

The _x m and Ay m are the corrections to be added to x m and Ym' respec-

tively, to yield the values of the dependent variables for the m+z th itera-

tion. Here F(Xm,Ym) and G(Xm,Ym) are the values of the original functions

F(x, y) and G(x, y) evaluated for x - x m and Y " Ym" As the corrections

approach zero, the F(Xm_Y m) and G(Xm,Ym) thus approach zero. Hence, it is

appropriate to look upon these as errors associated with the original Equations

(112). It is apparent that this procedure can be extended to an arbitrary num-

ber of functions and a corresponding number of primary variables.

For the purpose of the present problem, it has been found to be most con-

venient to consider the primary variables as the fi' f'i' f"i ' f'"i ' HT ' HT"

HTi," Kki _ Kki _ _"Kki at each nodal station i, plus the _H" This amount_ to a

total of (7 + 3K)N + 1 unknowns where N is the number of nodal points across

the boundary layer and K is one less than the number of elements present in

the boundary layer. The corresponding number of equations is provided as follows
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Taylor series expansions

Boundary layer equations

Boundary conditions

The _H constraint

Total

Equation numbers Number of equations

(77)-(79) (5 + 2K)(N- i)

(99)-(101) (2 + K)(N - i)

(61) - (63) and

(68)-(70) or equiv. (7 + 3K)

(34) 1

(7 + 3K) N + 1

It is thus necessary to specify the corrections of the other variables (such

as density, temperature, etc.) in terms of corrections of the primary variables.

The procedure for accomplishing this will be described later.

The Taylor series expansions are linear with respect to the primary vari-

ables as are several of the boundary conditions. The boundary layer equations

and the remainder of the boundary conditions are nonlinear. The _H constraint

is linear but it must be considered together with the nonlinear equations in

order to avoid a singular matrix. The recurrence formulas representing the

linear equations will be presented first, after which recurrence formulas

appropriate to the nonlinear equations will be developed.

Partial differentiation of the Taylor series expansions with respect to

the primary dependent variables in accordance with Equations (114) yields for

the m th iteration

(-l) Afi+ 1 + (1) Af i + (6_)L\f_ + (62--_)Af" i

+ (6-_83)Af''' 6__ _ ,,,i + (24) fi+l -- - ERROR (116)

(-l) APi+ 1 + (1)£Pi + (6N) APi + ( )AP i + (6--_._)£p '' = _i+ 1 ERROR ( 117 )

' ' _A '' -(-1)£Pi+l + (1) APi + (_)APi" + ( ) Pi+l " ERROR (118)

where as before Pi represents f' _i,HTi and Kki. Here £f.l+l, &fi' &fi' and

so on represent the respective corrections for fi+l' fi' f_i' and so on, the

numbers in parentheses represent the partial derivatives of the Taylor series

expressions (Equations (77) through (79)) with respect to the primary variables;

and the ERRORS are obtained by evaluating the left-hand-sides of the appropriate

Equations (77) through (79) for the values of the variables obtained during the
th

m iteration.

Similarly, the recurrence formulas for the linear boundary conditions

(Eqs. (61), (69), and (70)) are given by
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i

A f ' = - ERROR
W

8HTedg e = - ERROR

AH_ = - ERROR
edge

fw (1197= - ( ')m

HTedge HTedge actual m

= - (H_edge) m (121)

edge edge actual m

A_'edgeK = - ERROR = - (_'edge)mK (123)

The recurrence formulas for the nonlinear boundary-layer equations are

given by:

Momentum:

[c_,,_,,_c_) E ]
_H _--_- + C _H + (1 + do)f + dlfJ._l + d2fL_ 2 8f'

i9

f' (i + d0) df I+

J i-i

6__q 8p'APi - 6 i

I° > EI-_ _°i-1÷_ _pi-1
Pi-1

6 Pl Pi Pi-I )] A_H _ [i + _ + d 0Pi Pi-i Pi-i
• )]-( dleHL-leH d2eH_-2

F

Lq AXPI + f"i AXP2 + f!"l AXP3 + fi'-'lSXP4 + XPlSfi + XP28fi'

X

Pi = fi _He

(equation continued on next page)
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(equation continued from previous page)

+ f,,Xp 2 + f", XP 3 + f"' XPz i i-i 4 A_ H

Pi = f_l

- 2 [ZP!Af I + ZP2Af _'

+ zP3_fi" + zP4_fi_l]p_ = f_
1

= - ERROR (124)

where the ERROR is given by the left-hand-side of Eq. (99) evaluated for the

th
m iteration.

Energy:

I ) 1- Aq* + _ Aq r + (i + d O ) f + dlf__ 1 + d2f__ 2 AH T + HT(I + d0) Af

i-i

- (I + 2d 0) If[ AXP 1 + f"i AXP2 + f:"l AXP3 + f'"i-i AXP4 + XPIAf[

,, , ,,, ] - [ZPIAf _ + ZP2Af _ + ZP3Af_"

+ XP2Afi + XP3Afi' + XP4Afi-I Pi = HT i

-[ + ZP2AH_z + ZP3AH_' i + ZP.AH"+ ZP_Af"'.7 ZPILHTi _ Ti ij = f'

z-±J Pi = HT i " - Pi z

= - ERROR (125)

where the ERROR is given by the left-hand-side of Eq. (i00) evaluated for the

th

m iteration and Aqm* is given by

C f'f''u2 (cA_q Af' Af"

Aq_ = e + _ + f''
_H a

m

A_ H C_pT' AC _ AT'

3 _H + _H Pr C-- + --C + _--

P

Aa H

c_H  PrlC[ ( o a)/ + _._ _'- _P + _-"72"2_' + ctR_ + (_ - h

(equation continued on next page)
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(equation continued from previous page)

c_RT'

A(UI_2) + ctRT_ ( _T A_ }T + _T + (_ - h + ctRT_3 ) d_

+ _ _ - _h + ctR_ 3 _V_-3
(126)

Elemental species:

i

i-i

J. i 3

It tit 1+ f"'-_i-1XP4 + XPIAf!_ + XP2_fi + XP3AfI" + XP4_fi-i

Pi = _ki

[ ' 3 _- ZPl_fl+ zP2_fi'+ zP3_fi'+ zP_q"l Pi : _.
l

ZP _" 1+ ZP2_K _ + ZP3_' + 4AK_ = f,
i i i-i Pi l

= - ERROR

where the ERROR is given bY the left-hand-side of Eq. (101) evaluated for

the m th iteration and _j_ is given by

(127)
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Aj_ : C__ Z_ + (Zk - Kk )_4 C _H
aHSC S_C

(128)

Equations (124), (125), and (127) are reduced to linear equations in terms

of the corrections on the primary variables (Afi' 6fl, and so on) by noting

that the variables C, p, %, T, Pr, S--c, _, _p, _i_2 , _3' _4' qr' Zk' and

_k evaluated at any point in the boundary layer can be considered as func-

tions of static enthalpy, static pressure, and elemental composition. With

the pressure assumed constant across the boundary layer, it follows that all

of the corrections on unprimed variables with the exception of &qr can be

expressed as

_, _( )i

_( )i
A_Kkk + _h. Ahi (129)

A ( ) i = _kk.-- i l

kk

where from Eqs. (9) and (36)

u 2 f!_
e l

hi = H_ 2 a_ (130)

so that

u_ f_ &fi AeH 1

AHTI e-----!--1 I (131)Ahi = ' - _H f1_ _H

The Aqr i is more complicated in that it depends upon the dKkk j and Ahj

at all nodal points j.

The _-derivatives of these variables (i.e., the primed quantities) can

likewise be expressed in terms of corrections on the primary variables as

follows

2 ( ) i A_K_kk '

() :
kk i i • l

+ h'.
1

k_k _( )i )

_e( )i +- gh.

_h i
i

_().
i A_k. + _0 Ah'i

3h i
3%k.

i

(132)
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• D

where

so that

Uefifi
hi = H'

• 2

i TI _H

U _ f'.f'.' ( Af'. Af'.' ASH 1Ahi-- AH_i e_H21 I _l + _l - 2 O'H J

(133)

(134)

Use is also made of the following which are obtained by differentiating

Equations (86):

( )AXp I = 6"q APi - _ Api + --_ APi + APi_l

" --_-- - 3_ APi + 120 APi-1

( )IAXP3 -- 6_3 APi8 _120 APi + _420 APi' + APi_l

AXP = 6"q3 APi 6_,/IAp i + _ _ APi_ I
4 24 30 504 Ap_' + 252

The AZP i = AZP 2 = AZP 3 = AZP 4 = 0 since ZPI, ZP2, ZP3, and ZP 4 can be com-

puted before the iteration commences.

Substituting Eqs. (126), (128), (129), (131), (132), (134), and (135)

into Eqs. (124), (125), and (127), and collecting terms yields, neglecting

the off-diagonal terms* arising from the Aqr, the following recurrence forrnu-

las for the momentum, energy, and K th elemental species equations between

nodal points i and i-l:

olaf i + c2Afi_ 1 + c3Af [ + c4Af_. 1

+ c5Af"l + c6Af'll- + c Af'" + c Af"'7 i 8 i-i

+ c9AHT. + CloAHTi_I + CllAH_i + c AH_12 Ti 1
l

(equation continued on following page)

*As mentioned previously, Aqr i and Aqri_ I produce corrections _kj,

AHTj, Af_ and A_Hj at all boundary-layer nodal points j.
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+ Cl3_-OTi^_"+ Cl4_"_'i__Cls_Hi + Cl6_ni_l

kk i - i

c _" _ Ckk6_kki i)

+ + kks _k = - _RROR (136)
Ckk4--ki-1 i -

where the coefficients for the corrections Cl, c 2 .... differ in form for

the momentum, the energy, and the K th elemental species equations and in gen-

eral yield different numerical results for each elemental species kk and

for each nodal position in the boundary layer i. The coefficients for the

corrections are listed in Tables I through III for the momentum equation, the

energy equation, and the K th elemental species equation, respectively.

In order to complete the set of equations, it is necessary to develop

the recurrence formulas for the _H constraint and for the nonlinear boundary

conditions. The _H constraint (Eq. (34)) yields

Af_c- cAf_e = - ERROR = - (f_c - Cf_e)m (137)

The boundary conditions at the boundary-layer edge are nonlinear when an

entropy layer is taken into account. In this case, Eqs. (68) are applicable,

resulting in the following recurrence formulas:

-dfedge + I_e (f'_)l _H
edge

+ Afedg e

edge

= - ERROR

edge (f'_) edge m

(138)
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_f. :
1

TABLE I

CORRECTION COEFFICIENTS FOR MOMENTUM EQUATION

[(1 + d0)f' I Afi_ 1 :-[(1 + d0) f' 1
i i-i

E] ' [3, - + C 1_fi : A1 i + B1 df1-1 : A1 i-i

' M: + B 2 Afi_ 1 : - + C 2
i i i-I

I ll

Af I : B3 Af'.''• l-i : C3

_HT1 : Ff'' _C 1 + (D 2)' L_H _ i L._
_p _h

AHTi_ 1 L_H + (D4) _L-

i-i _p " _h

AH'' : 0 _H" : 0

T i Ti_ 1

: D Kkki_ I. D 5 (_P

r _ r _

"_H : LA4j +B4 A"H : -L"'4J +c4
i i i-i i-i

U _

A1 e f, f,, 5Cm - -- _-_ + (i + d O ) f + dlfL_ 1 + d2fL_ 2
3

_H

)A4 . f,2 _C_ _- c

]31 - - 2 DIxPI+ zPl _ i%l_h
" _H i
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TABLE I (continued)

= - i, f' -
B2 2 D 1 XP 2 + ZP 2 Pi i c_H

B3 2 D1 Xp 3 + ZP = f,.Pi

B
4

II f 1dlaH£-i --+ d2_H_-2 f_' XPI + f"'l XP2 + f''i XP3 + i-i XP4

2 Pi
eH

= f:
1

+ -_Ue f'i 2f"i D3 i + i (D2)___ =

c_H 5P

C1
_ _ f" D 5 + f' (D 4)

C_He L i-i i-i i-i _Sp = _-__

= .-9-e f' _P

C 2 - _ i-i D5 _ i-i

I"

c_--_L0_,_+_ ..
Pi i

C 4 =
u e , ,, D f_'-i )
s fi-i 2fi_ l 5 i-i + (D4 _

C_H

D 1 = 1+ 8 + d 0 - _H

48



TABLE I (concluded)

2
D3 = _ C_H 12 Pi

Pe l
o_ = _ _;_-___

2 6"q 2 Pe
D5 = - 8 C_H 12 2

Pi-i

Pi-i / _P i-I +_ L_,, _ )
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TABLE II

CORRECTION COEFFICIENTS FOR ENERGY EQUATION

_f." [(1 + d0)HT]i i Afi_ 1 : -[(i + do)HT] i-i

+ B

i 15 Af'i-i : -[AI51 i-i

Af'.' : [AI6 ] + B
l i 16

'" : BI7Af i

i-1 : - A16 i-i

Af'." :
l-i C17

AHTi : [AI81 i + BI8 AHTi-I : -IAI81 i-i

AH_ :
i DI4) 5 3 I +

= _ i BI9

i-i "_" . i-i

AH" :
T i B20

A_ki:

AH"
Ti_ 1 C20

A%ki_l: -- " (]_-'3) () m _A., ]

J
i-1

AKkk" :
1

Kkki- i"

Kkk i- i:

i-i
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TABLE II (continued)

C17 - 41 + 2d O) XP 4 . HTi

-IC20 (1 + 2d O) XP 4 Pi l Pi_-f'

I ctRl T' '

= h' - ICP + + ctR T _/3 + (_ - h + ctR T _3)_4DII _--_-21

c f'f" e+ p--_-r+ + _r
DI2 = _H _He _ 1

D1a-- cDl2_q_ _+_--_- _ _' Pr T_-

T'T_"p
, ,_ ' _h ' T _-+ Hscc (_3 +_3)ctR _ ÷ _4_ + _4ctR

Sc _P + _P
-- (UI_2)_

Bp = _ only

F _c E
+ h_H Pr aH S-_ kkk

I _U3 I + h'
H S-'_ kkk _ p _Kkkk

+ _ (_ _ _ + ct_ T _3) _Xk

H s c kkk

_4 /-----C----

_P_Kkk k

+ h'
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TABLE II (Concluded)

_=_-_ only
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TABLE _'_ EQUATION

COBIAECTION coEFFICIENTS FOR Kth EL_M_qTAL sPECIES

_fi-i % . _(I + d0_Kk I i-i

_£i " i

._ f'(D6__ .

_f'_' : B 9

+ BI0

+ BII

_A71 + C 7, . - i_ _
_fi_l

i i

+ B 8 _£i-i :

2 _ + C 8

_ U_e f' (D 6)_- _ -W_ " _ _-i

_f,,' : C 9
i-i

h_" : 0
T i

1

' i

+ ClO

BP

+ _s _ \TW-Ii-x

Ti.l

+ Cll

_Kkki_l: - _AIII i-i

AKkk i-i"

_Kkk i_i"

+ C14
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TABLE III (continued)

A 7 -

2

Ue (f,,D6 + f'D7) 5
n

Bp B_kk

__ + [(i + do)f + dlf__ 1 + d2fz_ 2
k = kk only

o[]Ax2 D6 !.., ___

_P _Kkk

U _

A14 = __e f' (2f" D 6 + f'D 7)_
3 m

C_H "_
ahS-_ aH + -

B 7 - - [ZPI + (I + 2d 0) XPI3 Pi " %i

- _H e _ f_ _ _ f_, I _kl 6--/I (D8)
l_'h--Ji- 6 f[ i,

_H _-P =

B 9 " -[ZP3 + (I + 2d 0) XP3_ pi ,, _k i

Blo " _H_ _-'E-Ji- 6 i, ____=
_P
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TABLE III (continued)

B11 = - EZpI + (i + 2d O) XPI] Pi fi'= ' k = kk only

I_ 1-_ (°_ _IBp

B12 = -[Zp 2 + (i + 2d O) XP2] Pi fi"= ' k = kk only

_l_= _[_._+ cl+_o__] _i _i.= ' k = kk only

BI4 = e 2 l l

c_H B?

+ ' _,-

C7 &H e 6-_2 fi-i + 6_6 fi'-i _h'-li-1 + _ f' (D8)= -7 i-i i l, =
c_H

C8 - _H e 6__ f,= -T 12 i-i _E-ji-l
=H

C9 = -[ZP4 + (i + 2d O) XP41 pi = _"

l

C10 = _H 62_ _-h--Ji-i + _ (D8) i-l, _ =

Bp
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TABLE III (concluded)

LZP4 + (i + 2d0) XP43 Pi = f_' k = kk only
C13

= e _ z' z + qll i-i + _C14 _ 2 i-i i-1 6 fi-i (D8) i-1,

_H _-_ =

c [_ _',,l

I _ [_ ](l_C 1 _s_)
_H sc

+

(_- _ [ _T'_'_

5?



d (

_ df"

edge + L_

f,_)

(fedge_H + _Hdfedge )

edge

+ _Hfedge

edge

Afedge = - ERROR

f' d (f,_)
+ °H df (139)

edg m

In the absence of an entropy layer, Eqs. (71) yield the following recurrence

formulas:

df e - AC_H = - ERROR = - (fe - <IH)m (140)

_f .... ERROR = - f" (141)
e e

Although Eqs. (140) and (141) are linear, these boundary conditions are in-

cluded in the nonlinear set because of the possibility of an entropy layer.

As pointed out in Section 3, the wall boundary conditions can assume a

variety of forms. When the boundary layer is coupled to a transient charring

ablation solution, there are a total of K + 2 nonlinear wall boundary con-

ditions supplying, in effect, PwVw (and thus fw by means of Eq. (60)),

HTw and K Kkw. Therefore, although some of these boundary conditions

become linear for simpler problems, they also must be considered as nonlinear

for the general solution procedure. Solution for the wall boundary conditions

for the fully coupled problem are discussed in Ref. i0. The wall conditions

for two simpler problems are described herein.

In the case that the surface conditions are assigned a priori, these

boundary conditions become particularly simple. For example, if PwVw ,

and ..K_w are assigned, the following recurrence formulas result:
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a(PwVw)*
_f

W Afw = - ERROR = - [(PwVw)* - (OwVw)* I ] (142)
actual m

_HTw - ERROR = _w HTw actual m

A, = - ERROR = - [_ - , ] (144)w w w actual
m

where from Eqs. (59) and (87) it follows that

a (pwVw)*

fw
= - (i + do) (145)

To illustrate a more complicated situatio_ consider the case of steady-

state ablation of carbon. The appropriate wall boundary conditions (given by

Eqs. (64) through (66)) yield the following recurrence formulas:

(_vw)*
(_Vw)* _w ÷ _w _w

4o ¢

w = ERROR_fw + Aq_ + T AT w
W

(146)

(PwVw)* _Cw + (KCw- i)--_f(--Pwwvw)* Af w + AJ_w =- ERROR

t _,%,Pw.w,* Af + = - ERROR

(pw_w)*c_ +_ _ w _Jlw
W W W

(147)

_Kpeg (T w )

1 _(In ) _T w"3 PC3
W

_T w = - ERROR (148)

where the ERRORS are given by the left-hand-sides of Eqs. (64) through (66),

respectively, evaluated for the m th iteration, the _(PwVw)*/_f w is given

by Eq. (145), the dq_ and dJ_w are given by Eqs. (126) and (128), respec-

tively, evaluated at the wall, and the dT w and _(_n PC3w) are reduced to

the primary variables by use of Eq. (12_ .

In many problems it has not been necessary to consider all of the terms

in all of the coefficients in the recurrence formulas. The retention of the
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major terms has been seen generally to improve convergence and thereby reduce

the number of iterations. However, overall computational time and storage

requirements can be improved by dropping the lesser important terms. At pres-

ent, the terms involving second derivatives and some of the lesser important

terms involving first derivatives are excluded. Of course, the dismissal of

terms from the recurrence formulas does not affect the accuracy of the final

result as long as the ERRORS are evaluated precisely; rather, the errors are

driven to zero along different paths.

The coefficients for the recurrence formulas for the Taylor series ex-

pansions (Eqs. (116) through (i18)), the linear boundary conditions (Eqs.

(119) through (123)), the _H constraint (Eq. (137)), the nonlinear edge

boundary conditions (Eqs. (138) and (139)), and the boundary-layer equations

(Eqs. (136)) evaluated for the m th iteration form a non-square matrix [A]

with I = (7 + 3K)(N - i) + 6 + 2K rows (the number of equations, excluding

the nonlinear surface boundary conditions) and J = (7 + 3K) N + 1 columns

(the number of correction variables). This matrix equation is given by

=
IxJ J I

where _Vj represents the correction on the jth primary variable (_flth
!

_f2 ..... _fl" etc.) and E i represents the error associated with the i

equation.

This matrix can be reduced such that all corrections are expressible in

terms of _fw' _HTw and the _Kkw. This approach makes it convenient to

treat varied and complex surface boundary conditions. Any consistent set of

surface boundary conditions can be added as an option with a minimum of pro-

gram modification. The primary reason for this approach, however, was to im-

prove the numerical stability if the boundary layer were to be iteratively

coupled to a transient charring ablation solution procedure, by relegating the

highly nonlinear surface boundary conditions to a subsidiary iteration with

the charring ablation solution. The influence of the boundary layer would be

contained in the reduced coefficients of the _fw' _HTw and _Kkw somewhat

analogous to convective transfer coefficients.

The matrix EA_ is quite sparse (i.e., it contains many zeros) in an

orderly way. Substantial savings in computation time and storage allocations

can be realized if full advantage is taken of this ordered sparseness. This

is extremely important since the solution of a boundary layer with several
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q-

elemental species would otherwise be very costly. For this reason, the matrix

solution procedure will be discussed in some detail.

The first step in the matrix solution is to divide the equations into

linear (symbol L) and nonlinear (symbol NL) sets, namely

I

AL i BL

i
ANL t BNL

i

AVL

AVNL

IxJ J

- L-; j
I

(15o)

where for convenience the variables are also classified as "linear" and "non-

linear". The distribution into linear and nonlinear variables is somewhat

arbitrary, but care must be taken that the square matrix [AL] not be singular.

It has been found convenient to select the following linear corrections and

to arrange them in the order as listed: AVLF(Af2, Af3, .., Afn, Af_ Af_ ....

Aft, -t'f"w ' --2Af!'_ .... Afn_i) ; AVLHCAH_'"- ±n A HTr2' AHT3 ..... AHTn, AH_w, _H_ 2 ....

AH_n) ; and K sets of AVLK(AK_n, AKk2, AKk3 ..... A_kn, AK_w, AK_ 2 .....

AKin ) . The nonlinear corrections are conveniently arranged as follows: AVNL F

ii| I! ! I! o _,.i! )AS H , Af w, Af"n, Afw"'" Af2 ' "''' Afn ); AVNLH(AHT_ AH_t, AHT 2, ., _nTn_l ; and

K sets of AVNLK(AKkw, AKkw,_" AKin, _""''' AKkn i" Here the nodal stations are

sequenced from 1 at the wall (subscript w) to n at the outer edge of the

boundary layer. The linear equations are conveniently sequenced as follows:

L F (linear boundary conditions and Taylor series expansions for f and its first

and second derivatives); L H (linear boundary conditions and Taylor series ex-

pansions for H T and H_);and K sets of L k (linear boundary conditions and Tay-

lor series expansions for _ and _). The nonlinear equations are sequenced as

follows: NL F (the momentum equation evaluated between each neighboring pair

of nodal stations together with the two nonlinear boundary conditions and

_H constraint); NL H (the energy equation evaluated between each neighboring

pair of nodal stations); and K sets of NL K (each of the elemental species

equations evaluated between each neighboring pair of nodal stations). The

form of the resulting matrix equation is shown in Figure 3. Here, for exam-

ple,[m_LFs ] and [BNLFH 3 are matrices representing the coefficients of the

corrections [AVLH] and [AVNLH], respectively, arising from the nonlinear set

of equations NL F with the corresponding errors given by the single column

matrix [ENLF] .

The first step in the matrix solution procedure is to invert the sub-

matrices [ALpp 3 and to form the matrix products [ALpp] -I [BLpp 3 and [ALpp] -I

[ELp] for p = F, H and M. The former products have to be done only for

p = F and H since the linear equations relating the k th elemental species
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4

to its derivatives (LK) have the same form as the linear equations relating

total enthalpy and its derivatives (LH). Furthermore, this has to be done

only once for a given problem as the matrices EALpp] and [BLpp 3 depend only

upon the boundary layer H-spacing which can remain fixed as a consequence of

the stretching parameter _H"

The linear corrections E_VLp3 can then be expressed in terms of the non-

linear corrections E_VNLp] and the linear errors EELp] as follows:

I IxI IxJ J

IxI I

where I = 3N - 2 and J = N + 3 for p = F and i = 2N and J = N for

p = H or K with N the number of nodal points in the boundary layer. These

can be introduced into the nonlinear equations to yield the reduced problem:

;
IxJ J I

where #_K + 2) (N - i) + 3,

matrix L are given by

J = (K + 2) N + 3, and the coefficients in the

m IE I-I E l}I.
-- . - _. BL (153 )
BNLij = BNLi3 ANLi,%+ r ALpp " PP j-s

L=l

where p = F, m = 3N -2 and r = s = 0 for 1 i J i (N + 3); p = H, m = 2N,

r = 3N -2 and s = N + 3 for(N + 4)_ j _(2N + 3); and p = K, m = 2N, r = 3N - 2 +

2NK and s = 3 + N(K + i) for F(K + l) N + 43_ J i[(K + 2) N + _ for the

choice of linear and nonlinear corrections listed earlier. The coefficients

in the LE-_J matrix are given by

m IE ] _i E II
-- = - -ELpp (154)

p n-=l

for p = F, H and K with the m and r having the same values as in Eq.

(153) for each p.
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Each time a coefficient in one of the original nonlinear equations (i.e.,

BNLi_ ) is formed, its contribution to [B-_ and _-L_Jan
ANLij

or a can
J

be computed• Thus, the rather large matrix [ANL 3 never has to be stored. In

fact, it is highly significant that the only major blocks of coefficients

which must be stored for the representation of all of the linear and nonlinear

equations and for their solution are EBLFF 3 which is 3N - 2 by N + 3_ EBLHH 3

which is 2N by N, and EBNL3 which is [(K + 2) (N - i) + 33 by E(K + 2) N + 33

where N is the number of nodal points and K is one less than the number

of elemental species• This should be contrasted with the size of the matrix

of the complete set of linear and nonlinear equations which is E (7 + 3K) N • i]

square.

The matrix Eq. (142) is substantially reduced further as follows• First,

the columns are rearranged so that the nonlinear corrections can be divided

• "' _H" _H_'2.....into two sets: AVNLa (_H' Af''n ' Af"',w _f2'" " "' _fn ' Tw'

_H"Tn_I, A_w" ' A_',,.2 .... _'n_l) and _VNL b (_fw' AHT and the A_ k ) . Eq. (152)

can then be expressed as w w

_VNL a

I

(is5)

where EB--_a3 is a square matrix, being the coefficients of the I corrections

[_La], with I = (K + 2)(N - i) + 3 and J = (K + 2) N + 3. Utilizing the

same matrix reduction procedure employed previously (in going from Eq. (150)

to Eq. (152)), the E_VNLa3 can be expressed in terms of the reduced set of

corrections EdVNLb3 as

' --I

I IxI I x J J

IxI I

where I = (K + 2) (N - i) + 3 and J = K + 2.

The reduced set of nonlinear corrections [_VNLh3(dfw,__ AHTw and the &Kkw)

are obtained from a consideration of the nonlinear wall boundary conditions.
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Once these are determined, the remaining nonlinear corrections EAVNLa3 are

obtained directly by use of Eq. (156). The linear corrections E_VLp3 are

then calculated using Eq. (151). These linear and nonlinear corrections are

then added to the corresponding primary variables in accordance with Eq. (115),

thus completing the m th iteration. The magnitude of the errors are checked

and the procedure advances into the m+l th iteration if the absolute errors

exceed prescribed upper limits. If not, the iteration is completed for the

current value of the streamwise position _ and time t.

Recurrence formulas for nonlinear wall boundary conditions are given by

Eqs. (142) through (144) for assigned PwVw , HTw and _kw , by Eqs. (146)

through (148) for steady-state carbon ablation, or can be obtained from any

other consistent wall boundary condition. It is apparent that these equations

must be expressed in terms of the EAVNLb3. When PwVw (or fw ) , HTw (or Tw),

and the Kkw are assigned, the E_vN_ are given directly (e.g., Eqs. (142)

through(144)). However, when fluxes are assigned or mass and/or energy bal-

ances are required, the _J_w and/or nq_w (given by Eqs. (128) and (126),

respectively, evaluated at the wall) are functions of EdVL 3 and EdVNLa3 as

well as EdVNLb3. That is

_ _FLUXi_ _ _FLUXi _ _FLUXi

J J J j J

where FLUX I. can be J_w and/or qaw* and the summations are performed

over linear and nonlinear variables with nonzero coefficients. The E_VL3

and E_VNLa] can be eliminated from these relations by making use of Eqs. (151)

and (156). For this purpose it is convenient to look upon Eqs. (157) as

additional nonlinear equations in the matrix Eq. (150):

FL = AF i BF AVL
l

J

(157a)

where I is the number of flux equations of concern, J = (7 + 3K) N + i,

AFij = _FLUXi/_VL j and BFij = _FLUXi/_VNL j . First, Eq. (151) is utilized to

eliminate the E_VL3 from Eq. (157), yielding the result

I I XJ J I

(158)
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.°

where I

nonlinear varifies), and the coefficients are given by

m /i I-1 I 11
- gBFij = BFij - _i,_+r _pp BLpp

_=i

= - -ELpp

p _=i

is the number of flux equations, J = (K + 2)N + 3 (the number of

_,j--s

(159)

(160)

where the subscripts are the same as those defined after Eqs. (153) and

(154). Next, Eq. (158) is rearranged as

[AFLUX] = [_a !_b] [____V__a I -[_]

L_J
J

(16l)

Equation (156) is then used to eliminate the [AVNLa] from Eq. (161), yielding

I I x J J I

where

are given by

I is the number of flux equations, J = K + 2, and the coefficients

m i
E_i = E--Fi- _. Fail a

_=I

(163)

(164)

with m = (K + 2) (N - l) + 3. For clarity, it can be seen that the matrix

Eq. (162) is equivalent to
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K \

kk=l

%.kk  k + + ck fw +
W W

K

kk=l

aK+l,kkA_k w + bK+IAHTw + CK+iAf w + dK+ 1

(162a)

where the coefficients are constants during the m th iteration. Thus, cor-

rections in the wall fluxes have been reduced to linear functions of correc-

tions in wall state and total mass flux into the boundary layer (utilizing

Eq. (145) and noting that HTw = hw)-

Equations (162) can be substituted into the recurrence formulas for the

energy and mass balances (e.g., Eqs. (146) and (147)) for steady-state carbon

ablation. The resulting equations together with the additional recurrence

formula(s) for the nonlinear wall boundary conditions yield the following

matrix equation:

I xl I I

where I = K + 2. The AV_ b are then determined by matrix inversion

I I x I I

(166)

It should be noted that the time required to invert this matrix is trivial.

The time-consuming inversion is that of , required for Eqs. (156),

(163) and (164), which has the dimension (K + 2) (N - l) + 3.

In this section the Newton-Raphson recurrence formulas for the linear

and nonlinear equations have been developed. An efficient method for solving

these equations has been outlined. The analysis is completed for the case of

a boundary layer coupled to steady-state mass and energy balances. The pro-

cedure utilized for coupling to a transient solution for internal conduction

is described in Ref. i0.
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SECTION 6

RESULTS FOR INCOMPRESSIBLE AND COMPRESSIBLE

SINGLE-COMPONENT BOUNDARY LAYERS

The equations presented in Section 3 have been programmed in Fortran IV

utilizing the numerical procedure described in Sections 4 and 5. Solutions

have been compared to available results for several incompressible and com-

pressible single-component boundary-layer problems as tests of the accuracy

and convergence of the procedure. It has been seen that reasonably accurate

results can be obtained with as few as five nodal points (the wall, three

internal points, and the boundary-layer edge) and that three to four place

accuracy can generally be obtained with seven points, although about ii points

have been required for some severe tests to obtain this level of accuracy.

Convergence has been consistently satisfactory, four or five iterations being

required for a starting solution and three iterations generally being adequate

for subsequent (downstream) solutions. Some typical convergence and accuracy

checks are presented in this section.

Typical convergence of a velocity profile in an incompressible similar

boundary layer with adverse pressure gradient is shown in Fig. 4 in terms of

the conventional* Levy-Lees transverse coordinate. Starting with an assumed

linear profile, the first iteration established the basic shape of the pro-

file, the second iteration brought the solution within two to three percent,

and the third iteration yielded results which were converged to three signi-

ficant figures and compared favorably with the tabulated results of Loit-

sianskii. 26

Validity checks for the nonsimilar incompressible boundary-layer problems

of uniform blowing and uniform suction on a flat plate are presented in Fig.5.

I!

The wall shear function, fw' for these two cases is shown in Fig. 5(a) in terms

of the stream function at the wall, fw'** The solution of Lew and Fanucci 27

is shown for comparison. Convergence required about three iterations at each

streamwise station. Profiles of velocity ratio, f', and shear function, f'%

are presented in Figs. 5(b) and 5(c). It is of interest that both blowing and

*The normalizing parameter _H has been removed from _ subsequent to the

calculations in the accuracy checks presented in this section.

**It should be noted that f_ is zero at the leading edge of the plate, in-

creasing with streamwise dlmenslon for the case of suctlon and decreaslng

with streamwise dimension for the case of blowing.
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suction results were efficiently obtained with the same _ spacing, in spite

of a ten-fold variation in boundary-layer thickness, by the use of the coor-

dinate stretching parameter, eH' introduced in Section 3.

The wall shear function for uniform blowing into an incompressible bound-

ary layer is presented in Fig. 6 as a function of streamwise distance for a

pressure of 1 atmosphere, temperature of 2000°R, and mass injection rate of

0.005 ib/sec ft _ . Results are also shown for the case where blowing is ter-

minated at a streamwise position of 2 feet. It may be of interest to note

that the nonsimilar effect of upstream transpiration decays quite rapidly,

but that some influence persists for an appreciable distance downstream.

Velocity profiles, shear function profiles, and maps of enthalpy ratio

versus velocity ratio are presented in Fig. 7 for incompressible and compres-

sible similar boundary layers with Prandtl number of unity and various posi-

tive and negative pressure gradients and wall-to-edge enthalpy ratios. The

results compare favorably with those of Hartree 28 and Cohen and Reshotko. 29

These results were obtained with a 7-point nodal network. Two to five (gen-

erally three) iterations were required for each problem, where the previous

result was in each case employed as a first guess.

Calculations were made for several single-component compressible boundary

layers with variable properties corresponding to that of air at moderate tem-

peratures (I _ T °'ss, C _ T °'19, _ _ T °'7° and Pr = 0.7) for various values
W

HTw/HTe' and Ue_/2HTe. As an example, profiles of velocity ratio,
of

shear functlon, and temperature are presented in Fig. 8 for P = 1 atm,

T w = 1200°R, H T /H T = 0.2 and _ = 0 for several values of u_/2H T . Conver-

gence was simil_r t8 that obtained in the Cohen and Roshotko comparisons.

As an example of a nonsimilar compressible boundary-layer solution, re-

sults are compared in Fig. 9 to results obtained at the NASA Ames Research

Laboratory with the Smith and Clutter finite-difference procedure 5 for the

problem of Mach 10.4 flow over a 7½ degree cone with uniform injection down-

stream of the 0.1574 foot station. The wall shear is compared in Fig. 9(a)

whereas representative velocity profiles are compared in Fig. 9(b). The re-

sults agree to nearly four significant figures for the similar no-blowing

solution and the first few stations downstream of the point where mass injec-

tion is initiated. Further downstream, the results are still in reasonably

good agreement, considering the _-derivatives and possibly the f and
W

are computed somewhat differently by the two methods. The present results

were invariant with streamwise spacing. The effect of nodal distribution

across the boundary layer was not investigated. The effect of streamwise step

size on Smith and Clutter results was not available. The first solution re-

quired 4 iterations, whereas the downstream stations, including those near the
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zero wall-shear condition, required three iterations each. The entire solution

was generated in 45 seconds on the IBM 7094 computer, an order of magnitude

less than the results obtained with the Smith and Clutter procedure. The

s_ability of the present procedure is indicated by the fact that no difficulty

was incurred in obtaining solutions down to the zero-shear condition.

In order to gain some confidence in the ability of the solution procedure

to compute physical boundary-layer thickness, results were correlated with

experimental data reported by Watson et a130 for laminar shock interaction

over a flat surface. A velocity profile is presented in Fig. i0. The correla-

tion is good with the exception of values near the wall where it is reasonable

to expect some experimental error due to probe-shock interaction.

Results were obtained for a boundary layer in a ficticious gas with rap-

idly varying properties (e.g., Prandtl number variation from 0.6 to i0 across

the boundary layer) in order to study convergence in an extreme situation.

A converged solution was obtained in 7 iterations, starting with the usual,

uninspired, built-in first guesses.

The problem shown in Fig. 8 (where Mach number effects were investigated)

with moderately varying properties and the problem of rapidly varying proper-

ties were repeated with various partial derivatives which are used in the

iteration process but do not appear in the boundary-layer equations (such as

_Pr/_h and _C/_h) set equal to zero. In the former case, the total number

of iterations was increased by two for the entire set of five solutions. In

the more severe case, ii iterations were required (whereas 7 were required

previously). The final results, of course, were unaffected.

SECTION 7

SOME RESULTS FOR MULTICOMPONENT BOUNDARY LAYERS

To date no accuracy studies have been performed for multicomponent

chemically-reacting boundary-layer problems. However, convergence has con-

sistently been satisfactory. To illustrate, an iteration history is given in

Table IV for graphite ablation in air. In this problem, the ablation rate was

assigned and surface temperature was determined by a coupled mass balance

at the surface together with heterogeneous equilibrium. Considering that

the initial guesses for velocity ratio, total enthalpy, and elemental mass

fractions are built-in, linear profiles with respect to _, and that there

are no constraints on the size of the corrections, convergence such as that

shown in Table IV is highly encouraging. Furthermore, it is significant that
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this convergence has been obtained while ignoring all second derivatives and

some first derivatives in the iteration process.

Iteration

TABLE IV

CONVERGENCE FOR A TYPICAL GRAPHITE-IN-AIR

ABLATION PROBLEM

(Assigned Ablation Rate, Surface Conditions

Determined by Coupled Mass Balance)

Maximum Relative Errors* In

Normalized Wall Wall Elemental

Wall Enthalpy, Tempqrature, Momentum Energy Species

Shear Btu/Lb _R Equation Equation Equations

1 0.3135 -223.0 1992 1.0 3.7 0.31

2 0.1727 -804.0 1469 0.29 0.77 0.13

3 0.1628 -795.2 1478 0.10 0.53 0.025

4 0.1670 -794.2 1479 0.0064 0.0028 2.7 x 10 -a

5 0.1670 -794.3 1479 6.9 x l0 -4 1.9 x 10 -3 1.3 x l0 -s

*A relative error of 1 x l0 -3 corresponds to nominal 4-place accuracy

Boundary-layer profiles of velocity ratio, temperature, and elemental

mass fractions are presented in Table V for an air boundary layer over a flat

plate with unequal diffusion coefficients for all species, with and without

thermal diffusion. Mole fractions are presented graphically in Fig. ii. For

assumed equal diffusion coefficients and in the absence of thermal diffusion,

the elemental mass fractions remain constant across the boundary layer at the

assigned edge values of 0.23 and 0.77 for oxygen and nitrogen, respectively.

Consideration of unequal diffusion coefficients for all species is thus seen

to have a substantial effect on elemental mass fractions. With unequal dif-

fusion, the elemental mass fraction of oxygen first decreases slightly and

then rises to a maximum value of 0.2723 at the wall. When thermal diffusion

is also taken into consideration, the elemental mass fraction at the wall is

decreased slightly to a wall value of 0.2709. These wall values of elemental

mass fractions necessary to maintain zero mass flux at the wall are analogous

to the adiabatic wall temperature for zero heat flux at the wall.
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TABLE V

AIR BOUNDARY LAYER OVER A FLAT PLATE

WITH UNEQUAL DIFFUSION COEFFICIENTS:

(P = 1 atm, -.H_e = 5000 Btu/ib, T w = 5000°R, s = 1 foot)

y, ft U/U e K0

Thermal diffusion neglected

T,°R

0 0 0 0.2723 0.7277 4000

0.584 .00075 0.1889 0.2626 0.7374 5355

1.168 .00171 0.4044 0.2475 0.7525 6165

1.752 .00284 0.6148 0.2308 0.7692 6861

2.336 .00418 0.8000 0.2239 0.7761 7722

3.504 .00735 0.9699 0.2269 0.7731 8892

5.840 .01427 1.0000 0.2300 0.7700 9204

Therm..a! diffusion included

0 0 0 0.2709 0.7291 4000

0.584 .00075 0.1887 0.2594 0.7406 5350

1.168 .00171 0.4040 0.2447 0.7553 6170

1.752 .00284 0.6145 0.2288 0.7712 6877

2.336 .00418 0.8000 0.2240 0.7760 7748

3.504 .00736 0.9700 0.2279 0.7721 8903

5.839 .01429 1.0000 0.2300 0.7700 9204

This effect could be significant in ablation problems since substantially

more oxygen is available at the wall for reaction. Therefore, it is pertinent

to investigate the cause of the observed behavior. As a consequence of the

lower dissociation temperature of 02 relative to N 2, the oxygen is almost

completely dissociated into the relatively more mobile atomic oxygen at the

edge of the boundary layer, whereas the nitrogen is only slightly dissociated

(see Fig. ii). Moving from the boundary-layer edge toward the wall, the ni-

trogen recombines more readily than the oxygen. As a consequence, the gradi-

ent in the atomic nitrogen concentration, although small, is greater than

that for atomic oxygen until an _ of 2.5 or so is reached. Thus there is

a small net flux of nitrogen inward from the boundary-layer edge with a con-

sequential small decrease in oxygen elemental composition. Closer to the

wall, substantial recombination of the oxygen occurs_ producing a large gradi-

ent in atomic oxygen concentration and thus a flux of oxygen toward the wall.
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Thermal diffusion produces a small effect in the present problem since

temperature gradients are relatively small. Calculations performed at high

edge enthalpies have shown large thermal diffusion effects, as a consequence

of the larger temperature gradients, resulting in wall oxygen concentrations

below edge values.

Profiles of velocity ratio, temperature, shear function, and mole frac-

tions across a boundary layer into which a large quantity of Apollo heat-

shield material is being injected are presented in Fig. 12. These results

were obtained for an assigned surface temperature and assigned component

fluxes (mg and mc) and utilized a 30-component chemical model. A converged

solution was obtained in 7 iterations, starting with an air boundary-layer

solution with the same wall temperature and same edge conditions but with

no mass injection. The convergence histories of the wall shear function and

maximum relative errors are presented in Table VI. In this calculation, the

corrections in the elemental species equations were not allowed to exceed 0.30.

TABLE VI

CONVERGENCE FOR ABLATION OF THE APOLLO HEAT-SHIELD

MATERIAL INTO AIR

(Assigned Surface Temperature and Component Fluxes)

Iteration

Normalized

Wall

Shear

First Guess .2007

1 .0883

2 .1343

3 .1016

4 .0995

5 .0987

6 .0987

7 .0987

*A relative error of

4-place accuracy

Maximum Relative Errors* In

Momentum

Equation

0.26

0.19

0.095

0.069

1.4 x 10 -3

Energy

Equation

1 x 10 -3

Elemental

Species

Equations

0.16 0.30

0.42 0.30

0.38 0.23

0.21 0.11

£ 045 0.026

6.5 x 10 -3 5.1 x 10 -3

9.0 x 10 -4 7.5 x i0 -_

corresponds to nominal

The nonsimilar boundary layer around a sphere-cone reentry body with

water injection was studied to determine the injection rates required around

the body to maintain a uniform wall temperature of 5000°R. A 16-component

chemical model was employed in these calculations. The distribution of water
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injection rates and the distribution of velocity profiles around the body are

presented in ?igs. 13(a) and (b), respectively. These solutions, which in-

cluded evaluation of edge conditions, a similar solution at the stagnation

point, and nonsimilar solutions at ten additional stations, were obtained in

approximately 2.5 minutes on an IBM 7094 computer. Approximately 60 percent

of this time was spent in the equilibrium chemistry subroutines. It is thus

pertinent to mention that the total computational time could be substantially

reduced by the use of a specialized chemical procedure for the particular sys-

tem of interest. Also, substantial time was spent in tape operation intro-

duced by the use of overlays.
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APPENDIX A

INTRODUCTION OF THE APPROXIMATION FOR MULTICOMPONENT

THERMAL DIFFUSION COEFFICIENTS INTO

DIFFUSIVE FLUX RELATIONS

In this appendix the approximation for multicomponent thermal diffusion

coefficients is introduced into the expression for diffusive mass flux of

species i, diffusive mass flux of element k, and diffusive heat flux.

The diffusive flux of species i in a multicomponent gas incorporating

the bifurcation approximation for binary diffusion coefficients can be ex-

pressed as Eq. (23) :

P_2 F_zi by__n _21 Y_b _n T}Ji = - _--_ L_-- + (Zi - Ki) + Di T

when the diffusion factors, Fi, are considered to be invariant with tempera-

ture. Introducing the approximation for multicomponent thermal diffusion co-

efficients (Eq. (26))

(A-l)

D. T ctP_2

1 _ _i _ (Z i - K i) (A-2)

into Eq. (A-l) yields

P_2 [_Zi I_ Ln nTll+ ct by
(A-3)

or, equivalently,

P_2 F_zi

c t

b _n (_2 T )7

+ (Zi - Ki) by J (A-4)

which is the desired form for the diffusive flux of species i including the

approximation for unequal diffusion coefficients embodied in Eq. (26).
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Likewise, the diffusive mass flux of element k is given by

where

]P_2 [_k _ _n t/2,1
1 _ L'_Y-- by[

Dk T _ _kiDi T

i

+ _ 't', (A-5)

(A-6)

Substituting Eq. (A-2) into Eq. (A-6) produces

_ ctP_ 2 _, "

i

(A-?)

or by the definitions of Eqs. (16) and (25a)

1

DkT = _i _ (A-8)

The elemental diffusive flux can thus be expressed as

_7 ct)1
P_2 _ _ _n (_2 T

(A-9)
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The diffusive heat flux can be written as

(

qa - IP(eM +

_ (u_/2)

= _) by

[

_-7- P_Di_9-- Ji _i - s
i

(A-10)

where

Substituting for

s__ S _
i j

J" J'l
i!_ii

K i Kj

D. T and the term S becomes
1 _ij'

ctRT_ J i Jj

i j

(A-II)

(A-12)

Replacing the mole fraction xj

z i _ _Ki/Fi_2, S becomes

by 7_Kj/_j
and utilizing the definition

S SS (ctRT_ 2 KjFj F i 7_ - 1 j - -- j

_l 7_j 7_q _ i Kj j

i j

(A-13)

Expanding

S _-

_i _j 7_i

i j

Fiji i
i j

i j i j

(A-14)
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The second and fourth terms are identical upon interchange of subscripts but

of opposite sign and hence cancel each other. Utilizing 1/_ =_Kj/_j

and the definition of _i _ _xiFi' S becomes

S

i i

(A-15)

Rearranging

s = cta i
i

(A-16)

Substituting Eqs. (A-4) and (A-16) into Eq. (A-10), the expression for

diffusive heat flux becomes

f
(u_/2) _T

qa -_P(eM + v) + (I +
= ay _C_Cp)

[

c t

S bKi P_2 S, Fbzi b _n (_2 T )]+ pe D h i _- + _l _ [_--_- + (Z i - K i) _y x
i i

I ctRT I 1
x hi + _ (_I - Fi)

Now

S bKi S b (Kihi)hi _- = by

i i

S bh iKi _7-

i

(A-17)

_ _T
_. Kicpi
i

bh bT
(A-18)
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Utilizing this and eliminating all summations in favor of defined system

quantities yields the following result for qa

B (ue/2) -- BT
qa = - _ (eM + v) By + (k + PCHC p)

+ PeD p "_ + _ - + + CtRT

c t

B _n (_2 T )

+ (_ - h + ctRT_ 3) By

where _2 -= _ _ixi/Fi ' _3 - "_' Zi/7_i" _ - _ Zihi' and _p -= _ ZiCpi.

(A-zs)
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APPENDIX B

DERIVATION OF THE TRANSFORMED NONSIMILAR

LAMINAR BOUNDARY-LAYER EQUATIONS

In this appendix, transformation relationships for the Levy-Lees trans-

formation, modified by the use of a stretching parameter, are developed and

applied to the expressions for diffusive fluxes and to the boundary-layer

conservation equations.

The desired independent variables _ and _ are defined by Eq. (33)

= _ _ = a_ (B-l)
_H

where _H is a function of _ only, and

S

f _ ds= UePe_er o

0

y
r u

q = P dy

In addition, f is defined as Eq. (35)

n

fo°f - fw = _e dq

(B-2)

(B-3)

(B-4)

from which it follows that f' = u/u e where the prime refers to partial

differentiation with respect to _ .

The old partial derivatives can be expressed in terms of the new partials

by

where

_y = 0
S

(B-7)

= PeUe_er o
Y

K

Uer o P

(s-8)

(B-9)
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Furthermore

_= __I_•

(B-10)

(s-ll)

where

(B-12)

L = _ _l- dart

aH

(B-13)

(B-14)

(B-15)

such that

_ _

_1-_ _1_-_ _--

It is necessary to evaluate the operator D( )

D( ) = _u _-i-i+ ov _-i-i
bs by

given by

(B-16)

(B-17)

(B-18)
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The global mass conservation equation (Eq. 3 )) can be integrated to yield

Y

pv - PwVw rK _ r pu dy (B-19)

o

Differentiating _ for constant _ , introducing f' , solving for

(2_) ½ f' dq , and integrating yields the result:

q Y

L  < udy(2_) ½ f' d_ = r ° (B-20)

Utilizing this and the definition of f , Equation (B-19) can be written as

-- _ _B-_;
pv = PwVw r _ _s (2_)½(f _ fw ) , nl,

o

With Eqs. (B-5) and (B-8), Eq. (21) becomes

pv .... PwVw PeUek_er_ _ [(2_)½(f fw )] 7(2__)f' ½ _S Y
0

(B-22)

Performing the differentiation

pv = pwVw- PeUe_er O (2_) _ ro

(B-23)

For convenience, define

pwVw  eUe er (fw+
(2_)_ '

(B-24)

Then

pV =

K

PeUe_ero

(2_) _ r o Y

(B-25)

101



Utilizing this, plus Equations (B-5) through (B-9)

+ pv = 0PeUePer o f' +
y s

(B-26)

which is the desired form for the operator.

In accordance with Equation (B-24), the use of this operator requires

that f be defined as
W

_% _ d_
f = _ (26) I" PwVw

W JO PeUe_er_

(B-27)

The diffusive flux of species i is given by Eq. (27)

Ji -

P_ _2 F_Zi + _ _n (_2 TCt)

Ul _- [_- (Zi - Ki) By

(B-28)

Applying the transformation of Eq. (B-6) with the aid of Eqs. (B-7) and (B-9)

yields

I )IIK ct

PeUe_er° _ Z_ +(Z i - Ki) _n _2 T (B-29)
Ji = _ _ l

where S--c is defined as _l_/p_2 and the prime refers to differentiation

with respect to q . Utilizing Eq. (B-17):

Ji -

PeUe_er_ I IIC ' ÷ (Z i Ki) £n _2 Tct

H S-'_ Zi

(B-30)

v_ere the prime now refers to differentiation v;ith respect to _ •

The laminar form of the streamwise momentum equation is given by Eq. ( 5 )

_u_+ 0_=_ -_ (B-31)
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Applying Eqs. (B-26), (B-5), and (B-6) yields by direct substitution:

a 2_ f, f _f Uer O P _ P

PPe Ue _er° - - _ + _ = 7 _ _ -'---'-_-(2_.)2

- PeUe_ero _ - y

Now u = f'u e where u e is a function of _ only *

(B-32)

_u = _f' f,,
Ue_--q= u e

(B-33)

8u f' du _f,
_= d--_+ Ue_- (B-34)

So that

[(du )( ]PPe us f _ + Ue _- - _ _ Uef"e be ro_ ' f' _f' f + _f

[u.r:u.,]Uero P _ P 2_ _p

- _ (2_) ½ - PeUe_er 0 _- y

where the prime denotes differentiation with respect to

2K yields:(2_)/PPeU e _ero

p, (B-35)

Multiplying by

(2_) f, _ du e _ _f
U e d--_ + (2_) f' - f f" - (2_) f"

, (2_) _s

Pete pu e - ppeUe _ero

P' (B-36)

Note that all properties evaluated at "e" are functions of _ only.
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Defining C _ p_/pe_ e and _ _ 2 _- dUe
Ue _ yields

(Cf")' + ff" - Sf 'a - (2_) 8P

pu:_7 3 2K
@PeUe _ero

(B-37)

The final term on the left-hand side of this equation involves _s which

Y

can be expressed with the aid of Eq. (B-8) as

_S = D U , _aK _IY -e e_e_o Y

(B-38)

Therefore

pu_ y

_f' _f f"l (B-39)

Introducing the additional transformation of Eqs. (B-16) and (B-17)

[ I > )i1 1 f, ÷ fief" -_ _f'_
_c_ _H _H

2--_ I_ P _-- dart I_ (r_ Ue /i _
.... + P'a H p dy

_ue % _ _ _H(2T)½ y

- 31_-(_-d_H

_')-( 5-_ _ '1

1 f" 1

f, _

where the prime denotes differentiation with respect to

made of the relation

(B-40)

and use has been
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= _H "_ = c_H -- dy _ y _H(2D"_ _ y
(B-41)

a and rearranging terms yields (noting that a H = UH(_)Multiplying by a H

only):

2_ a; _p P ,._ du H _ r O

- -- ' -' + pall P
pu_ H d_ (2D%

(

--2Z[f' _f__L'_f,, _f f'_ d_%1_'_ _'_ aH d'_ (B-42)

_f'

which is Eq. (52) of this report.

The normal momentum equation is given by Eq. (7)

_P 2-_ = 0 (B-43)

_-_ - rc

Applying Eq. (B-6) with the aid of Eqs. (B-7) and (B-9) yields directly

K

Uer O 9 _ua = 0

p, - rc

(B-44)

where the prime denotes differentiation with respect to q ° Utilizing

Eq. (17) and f' = aHu/Ue

u f'2 (2-_) ½
I e

p - = 0 (B-45)
K

_Hrcro

where the prime refers to differentiation with respect to _ . This is

Eq. (54) of this report.

In the event that normal pressure gradient can be neglected, Eq. (B-45)

is replaced by P' = 0 and the compressible Bernoulli equation yields

dP e du e

d_ 9e Ue --'_-d_
(B-46)
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Applying this to Eq. (B-42), the streamwise momentum equation becomes

1[cf] ( , Pe f_
ff" + h=H J

f f2 ]
(s-47)

which is Eq. (557 of this report.

The laminar form of the energy equation is given by Eq.

_1-_ + _v_-_ _

(30)

_,n _2 T

+ (_ - h + ctRT_ 3) -_y + qr

to q

Applying Eqs. (B-6) and (B-26)

ppeUe_ero ' _ - 2_ +

UeroP _ s
UeroP f,f" + A T'

+(h - h + ctRT _3 ) n _2 T t + qr

where the prime denotes differentiation with respect

aK and rearranging
by 2_/0PeU e _ero

(B-48)

(B-49)

Multiplying

0
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/

fH_ + C u 2 f' f" + P + -- _' - + --
e Pr S--c P _i_2

+ (h - h + ctRT_3'E'_ _2T ; qr(2

PeUe_erK o

-2_ ' "YC - %

i

T' + CtRT_ 3

(B-50)

where Pr -- _p p/k and S-_ = ILl_ _/pD _2 Applying Eqs. (B-16) and (B-17)

and multiplying by UH yields

lc [_,f,,u_ c I__ + _L_ +_ _' ÷1--- _'' - c_R_ ,e _ _ p + _--_2_ T + ctRTP3

'II }'( )ct + (2_)½

+ (h - h + ctRT_ 3) [Ln _2 T 1 PeUe_erK O

(B-51)

where the prime denotes differentiation with respect to

Eq. (56) of this report.

This is

The laminar form of the elemental species equation is given by Eq. (29)

_ _ _ { _l_ [ _ _ _n (P2TCt) 1
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Applying Eqs. (B-6) and (B-26)

PPeU:_er_ K f' _-- 2_ +

Uer_p,!Uer:P_ _2F_ + ~- _k) E£n(u2TCt)I'I} '- _-;'_]_ _L __
where the prime denotes differentiation with respect to

by 2_/0PeU:_ero_ and rearranging yields

IcE !IfKk+ ,_*C% _ £n[_Tct) ÷_k

Applying Eqs. (B-16) and (B-17) and multiplying by _H yields

IcE clI
--2_ f(L ~ _f+ i

+ Ck (B- 53)

Multiplying

(B-54)

where the prime denotes differentiation with respect to q .

of this report.

(B-55)

This is Eq. (58)

108



APPENDIX C

SPECIAL STAGNATION POINT CONSIDERATIONS

In this appendix equations are developed which are applicable at the

stagnation point of blunt bodies for the calculation of the flux normalizing

parameter, _*, the stre_mwise pressure-gradient parameter, 8, and the wall

stream function, f .
W

The flux normalizing parameter, _*, is defined by Eq. (44) as

6" = Pe_eUer°

(2g) ½ (C-l)

In order to compute the value of a* at the stagnation point, consider the

streamwise pressure-gradient parameter, 8, defined by Eq. (53)

8 : 2 _----due (¢-2)
u dg

e

The transformed streamwise parameter, _, is defined by Eq. (31)

S

f 2K ds_ = PeUe_ero

o

(C-3)

Differentiating Eq. (C-3) and introducing the result into Eq. (C-2) yields

8 = 2 _-_ due 1 (C-4)

u e ds o u re K
re e e o

Utilizing Eq. (C-l)

Pete du e
8 = (C-5)

a,2 ds

Solving for _* yields the result

(Pete dUe )½_/ (c-6)
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The dUe/dSlo needed for evaluation of _* if Eq. (C-6) is to be em-

ployed can be obtained as follows if Newtonian flow is assumed in the vicin-

ity of the stagnation point. In the case of Newtonian flow,

Pe = Pe c°s20 (C-7)
o

Near the stagnation point sin e = S/Ref f where Ref f

radius of the body. Hence

IPe = Po 1 R
eff

is an effective nose

(c-8)

utilizing the Bernoulli equation

u
e

Po = Pe + Pe-_- (C-9)

Equation (C-8) becomes

82PeUe = p (C-10)
2 o

Reff

or

s
u =
e Ref f 2Po >½

(C-ll)

The density is nearly constant in the vicinity of the stagnation point.

Hence

dUe 1 ( 2P° 1½ (C-12)
_s- o _ Reff - _-o ]

In order to compute the stagnation-point 8, consider the definition

of _ (Eq. (C-3)) in the form
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s 2K

(o)(ro)= f Pe ¢ _e -_ seK+Ids

o

seK +e

of
o

2K + 2 Pe --s- _e i d(s_K+a)
(C-13)

For Newtonian flow, comparison of Eqs. (C-II) and (C-12) show that Ue/S _

dUe/dS in the vicinity of the stagnation point. In addition, ro/S _ 1

and PeUe is a constant. Hence

1 du _K+2
_s-_o - 2_ + 2 Pete _ s (C-14)

Substituting into Eq. (C-4) yields

iCsdUe) i80 - a + 1 U e ds _r_o] - _ + 1 (C-15)

Hence, 8 o is unity for planar blunt bodies and 1/2 for axisymmetric blunt

bodies for assumed Newtonian flow.

The wall stream function, fw' is defined by Eq. (60) as

fw : - (2_)-½1 _ PwVd_ _ (C-16)

.J
o PeUe_ero

Differentiating Eq. (C-3) and introducing the result into Eq. (C-16) yields

s

fw : - (291-%/ PwVw r_ds (C-17)

o

This can be written as

s K

o

S K+I K

o

(c-is)
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where again ro/S _ 1 in the stagnation region. The integrand in Eq. (C-18)

is well-behaved, starting with a finite value at s = 0. However, at the

stagnation point, the value of the integral is zero and fw is indeterminant

since _ = 0. Thus, it is necessary to develop a special relation for fwl "

Applying l'Hospital's rule to Eq. (C-17), Io

p wVwro (2_)

Differentiating Eq. (C-3) and introducing the result into Eq. (C-19)

(2_)½

i = _ _ _wVwfw o PeUe_ero

Introducing Eq. (C-l) ,

I = - (Pw_w/c_*) ofw o
(c-20)

In summary, Eqs. (C-6), (C-12), (C-13) and (C-20) can be used to calculate,

respectively, the e*, dUe/dS, 8 and fw at the stagnation point of a

blunt body, and Eqs. (C-13) and (C-18) are useful for evaluating the integrals

and f in the vicinity of the nose region.
w
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APPENDIX D

ALTERATION OF THE BOUNDARY-LAYER EQUATIONS TO ENABLE

CONSIDERATION OF GENERALIZED BOUNDARY-LAYER-EDGE CONDITIONS

In the conventional treatment of the hypersonic boundary layer, the

boundary-layer-edge conditions are obtained from an inviscid solution as

those conditions which exist on the "stagnation streamline" (i.e., that

streamline which crosses the shock wave such as to become the stagnation

point and wall streamline). This same procedure can still be utilized to

include boundary-layer-displacement effects if a new body shape is consid-

ered according to the effective displacement of the flow due to the presence

of the boundary layer. However, when entropy layer or nonadiabatic flow-

field effects occur, this conventional approach is no longer adequate since

the edge boundary conditions become functions of the local stream function

as well as the streamwise coordinate. Hence, in these cases it is necessary

to normalize the dependent parameters of the boundary layer in such a fashion

that asymptotic solutions are achieved at the boundary-layer edge. A pro-

cedure for accomplishing this task is presented in this appendix.

The procedure used herein consists of normalizing the boundary-layer

equations with respect to the f = 0 streamline when performing the Levy-

Lees transformation described in Section 3 of this report. The equations

then remain unchanged except that in all equations the subscript "e"

is considered as this reference conditions, and "edge" as the actual edge

condition. For example, the definition of f' becomes

u u [uU) Ol
f' = aH Ue Uedge e edge

where u e is the reference condition and _edge

edge condition at some arbitrarily chosen _edge"

conditions are given by

is now the boundary-layer-

Conversely, the new edge

(u)u I)= u e ' Pedge = _ Pe

Uedge e edge e edge

(D-2)

and so on, where Ue ' Pe " _e' etc., are supplied by the inviscid solution

for the f = 0 streamline, and (U/Ue) edg e and (p/pe)edg e are also supplied

by the inviscid solution, but as functions of _ and f. That is
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and

Ue = Ue (-_) j f=0 Pe = Pe (-_) if=0 (D-3)

(D-4)

In order to illustrate this procedure, consider the following sketches

which represent typical profiles of (U/Ue)edge, U/Uedg e and f' at a given

for two selected values of Wedg e in the presence of an entropy layer:

j/ Hedge

%
<
v

T _ _

I

I

I

I
I
3 4

Hedge

Sketch (a)

3 4 3 4

Sketch (b) Sketch (c)

In this example, the viscous effects are considered to be confined to an

less than 3 so that both Hedg e considered are out of the boundary layer but

in the entropy layer. In Sketch (a), the (U/Ue) edge is shown to increase

with distance from the surface, as would be expected. Since Uedg e has dif-

ferent values depending on the choice of _edge' U/Uedge profiles would dif-

fer accordingly, as shown in Sketch (b). The u/u e is, of course, indepen-

dent of Hedg e since u e is a given value for a given _; however, as

shown in Sketch (c), the f'/_H does not approach unity at the edge of the

boundary layer, and, in fact, depends on the value of Wedg e chosen to rep-

resent the edge of the boundary layer.

In the absence of an entropy layer or other such effect, Uedg e = u e and

f'/a H does approach unity at the edge of the boundary layer as in the con-

ventional solutions. It is for this reason that the f = 0 streamline is a

convenient choice for the reference condition.
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APPENDIX E

ONE-DIMENSIONAL RADIANT HEAT FLUX IN AN ABSORBING

BOUNDARY LAYER WITH ANGULAR-DEPENDENT INCIDENT RADIATION

In this Appendix an expression is derived for the net one-dimensional

radiant heat flux in the boundary layer normal to the surface, qr' which is

needed in the energy equation (Eqs. (8), (30) or (56)). The wall value,

qrw, which appears in the surface energy balance (Eq. (62)) is also presented.

The multicomponent gas in the boundary layer is allowed to absorb diffusely

as well as to emit, but scattering is neglected. The wall is assumed to

emit spectrally and to reflect diffusely, but transmission of radiant energy

is neglected. The incident radiation at the boundary layer edge is allowed

to have an angular dependence to approximate intense radiation from the stag-

nation region of the inviscid flow field or from a nuclear explosion outside

of the boundary layer. The derived relations are an extension of the basic

relations of Goulard and Goulard (Eqs. (17) and (18) of Ref. E-l) to include

the specific boundary conditions described above. The present result also

reduces to that of Cess (Eq. (5) of Ref. E-2) if the radiation layer is con-

sidered to extend to infinity with no incident flux at this edge boundary

condition.

The one-dimensional approximation implies that the flow field extends

uniformly to infinity on planes which parallel the plane tangent to the sur-

face at the streamwise position of interest, but that properties may vary

from plane to plane. It also means that the net radiation transfer along a

ray which lies in one of these planes and passes over the streamwise posi-

tion of interest is constant but may differ from the value along a different

ray in the same plane and passing over the same streamwise location. Al-

though this approximation sounds crude at first exposure, it is probably

satisfactory for most boundary-layer applications, since the contribution to

qr depends upon the cosine of the angle between the radiant source and the

normal to the surface and decreases rapidly with distance. Use of the ap-

proximation affords great simplification in boundary-layer problems since

qr then depends only on the state of the boundary layer at the local stream-

wise station. On the basis of these considerations, the one-dimensional

approximation has been used extensively in boundary-layer studies and seems

appropriate for use in the present study.

Absorption has been shown to be important at high reentry velocities

(above 45,000 feet per second) in an air boundary layer (e.g., Ref. E-3).
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Furthermore, it can be significant at much lower velocities when foreign spe-

cies are injected by ablation of the surface material. Hence, for generality,

it is necessary to consider absorption as well as emission. The neglect of

scattering, on the other hand, is a good assumption under reentry conditions

as long as solid particles or droplets are not present in the flow field. E-2

For local thermodynamic equilibrium, the equation of radiative transfer
E-I

can be expressed as

i dlv

p_ cI_

= I - B (T) (E-l)
v v

where p is the density, _v is the absorption coefficient for the multi-

component gas, I V is the specific intensity, and Bv(T ) is Planck's func-

tion defined by

Bv(T ) _ 2h v 3
c 2 (ehV/kT - i)

(E-2)

where h is Planck's constant, c is the velocity of light, v is the fre-

quency, k is Boltzmann's constant, and T is temperature. The flux of

radiative energy across the surface da in the frequency interval dv is

obtained by integrating I V cosedw over all solid angles dw = sineded_

n 2n

qr_ = _0 _0 I (0,q0) cos0sin0dq0d0 (E-3)

where O is the angle between _ (the normal to the surface da) and

(the direction of incident radiation) and %0 is the angle between a refer-

ence line in the do plane and the trace of _ on the do plane (see

sketch) .

_ _trace of _

on da plane

_" da
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In order to allow the incident flux at the edge of the boundary layer to be

a function of _ and e it is expedient to consider the radiant flux in

the angular interval de, qrv,0, obtained by differentiating Eq. (E-3) with

respect to @.

It is also convenient for the purpose of evaluating boundary conditions

+ in the direction

to split the net flux qrv,e_ _ into the contribution qrv, e

of the normal unit vector n and the contribution qrv,e in the opposite

direction. Then

qv = q+ - q_ (E-4)
-_,O rv,0 v,0

where

2_

qr v , @

I (e,_) cosesin0d_

I (e,_) cos@sinedq0

0 < e < n/2

n/2 < e < n

(E-s)

Substituting Eqs. (E-5) into Eq. (E-l) and multiplying by 2_sina yields

1 1 _ 2nsineB (T) 0 < e < _/2 I

(E-6)

q_
1 dqr_,e 1 - _ - 2_sineB (T) _/2 < 0 <

P_v d_ cosO cose

Considering the sign convention of the following sketch such that the heat

boundary-layer edge

qr

v

wall
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flux toward the surface is positive

dy = - cosed_

Equations (E-6) can then be written

+ +

1 dqru,0 qr t e _

pa dy cose
2nsindB M (T)

1 dq_,0 %
Pay dy cose = 2nsineB (T)

(E-7)

(E-8)

Defining an optical thickness T M

T
M (E-9)

Equations (E-8) become

+

aqr+_,e qr_,e
dT COSe

M

= - 217sineB (T)
M

u

dq r q_

v,e v,e (T)dT - CO----Se = 217sineBv
M

0 < 6) < 17/2 l

J
17/2 < e <

(E-Z0)

Solution of Eqs. (E-10) yields

T

[ l+
qr e-t/c°se

M,0 40

T

- 217 B M (T) sinee-t/c°sedt 0 < e < _/2 (E-II)

T

TM / MeFqr e_t/oos01 e : 217

L _,o j_.
%, "I-

v

B (T) sinee-t/c°sedt
v

17/2 < e < 17 (E-12)
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where the subscript e refers to the boundary-layer edge.

It is necessary to evaluate the boundary conditions on the left-hand-

sides of Eqs. (E-II) and (E-12). First, consider the edge boundary condition

for Eq. (E-12). The first step is to evaluate this equation at the wall.

T

E /o ]TIcoMe Me
q; = qr + 2_ Bv(T) sinee-t/c°sedt e n/2 < e <

v,0 e M,0 w

(E-13)

where the subscript w refers to the wall. Assuming diffuse reflection and

spectral emission from the wall with a transmissivity of zero, the heat flux

away from the wall is given by E-4

r. q

q; ,e w = - 2sin@cos& ,_r_w (i - a ) + _e B (Tw)_I n/2 < {9 < n-_ M w M w V

(E-14)

where avw is the hemispheric surface absorptivity and evw is the hemi-

spheric surface emissivity and the minus sign arises because of the defini-

tion of @. If it is further assumed that the coefficients avw and evw for a

given frequency v depend only upon the nature of the surface and the sur-

face temperature but not on the radiation field to which the surface is ex-

posed E-4

= a (E-15)ev v
w w

and Eq. (E-14) reduces to

[" ]qr = - 2sin_cose qr (i - e ) + ne B (Tw)

M, _W VW V w M w M

n/2 < 6) < rr

(E-16)

+

The qrv which appears in Eq. (E-16) can be expressed in terms of known
W

quantities by evaluating Eq. (E-11) at the edge. That is
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T

--T /COSe ; Ve

+ + V

qr = qr e e + 2_ B v (T) sin0e-t/c°s0dt

V'0w V'0e 0

o < o < ./2

(E-17)

which upon integration yields

+

qr
v
w

/cos0 n/2 T V e

17/2-TVe _ /
+ e d0 + 2n B v(T) sin0e-t/c°s0dtd0

= qrv, 0

0 e 0

(E-18)

Exchanging the order of integration in the second term in Eq. (E-18) and

utilizing the exponential integral, defined by

E (t)
n

1

= f _n- 2e-t/Ud_

0

(E-19)

yields the following expression for q;
v
w

_/2 --T /cose T

+ _0 + v / ve
qr = qr e e d0 + 2_ Bv(T)E2(t)dt

Vw V'ee 0

(E-20)

Introducing Eq. (E-20) into Eq. (E-16) yields the following expression for

the one-sided heat flux away from the wall evaluated at the wall

q; = - 2sinecose (i - e v ) q; e de

v, ew w v, B e

B (T o+ 2_ B v(T) E 2(t) dt + _ev w v

0

rt/2 < O < Tt (E-21)
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Substituting Eq. (E-21) into Eq. (E-13) yields the following expression for

the one-sided heat flux away from the wall evaluated at the boundary-layer

edge

T

T e/COS@ _ _e
v Bv(T) sinOe-t/cos0dt

q_ = 2he

v,@ e J

0

Tve/C°S@ Fn/2 + -T

- 2sinecos@(l - e V )e _ qr ,@ e v /c°se'd@'

w J0 _ e

T

Tv /c°se/VeBv- - )e e (T) E2(t) at4_sinOcos@(l evw

0

T /cosev
- 2_sinecosOev Bv(Tw) e e

W

u/2 < @ < _ (E-22)

The first through fourth terms in Eq. (E-22) are, respectively, the contri-

butions from the radiation emitted in the boundary layer at all angles @

away from the surface, the radiation incident at the boundary-layer edge

reflected from the wall, the radiation emitted in the boundary layer at all

angles _ toward the surface, and the radiation emitted from the surface.

The common multiplier e 7ve/c°s@ represents the attenuation* of these types

of radiation as they pass outward through the boundary layer whereas E2(t )

represents the attenuation of the incident flux as it passes through the

boundary layer from the edge to the wall.

The one-sided heat fluxes can now be evaluated. Integration of Eq.

E-12) yields

*In that the valid range of 8 is from _/2 to n, the cos@ is always

negative.
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qr
v

_ -(T e-TM)/cos0qr e dO

n/2 V, 0 e

"F[ T

_/ f Ve - (t-Tv)/eose
- 2 B M (T) sin0e dtdO

_/2
v

(E-23)

Substituting for

tion yields

qrM,0e from Eq. (E-22)
and inverting the order of integra-

T

fve / (Tv-t)/coS0
2_ Bv(T ) sinOe d0dt

WO _/2

- 2(1 - e V ) + --TVe/COS0 TM/COS0e 'dO ' s inOcos 0e dO

w j>_/2

[/0'
Me _ T JCOS0

-- 4n(1 -- aM2 BM(T) E2(t)dt I sin0cosOe _ dO

J _/2

_v/cos e- 2neMwB v (Tw) sin0cos0e dO

_/2

T TT

/Me)/ - (t-Tv)/cos0-- 2_ B v (T sin0e d0dt

_/2
V

(E-24)
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P

t

Utilizing the definition of the exponential integrals (Eq. (E-19)), Eq. (E-24)

becomes

qr v

T
_V

Joe2n Bv(T) E2(T v - t) dt

+ 2(1 - evw) E3(Tu)IJ0 qrV+" 0ee-TVe/cOs0d0

T

+ 4_(I - e w) E3(TV) Bv(T)E2(t)dt

T

+ 2nev3_(Tw) E3(Tv) - 2n Bv(T)E2(T V - t) dt

T
V

(E-25)

Integration of Eq. (E-II) yields for the positive one-sided heat flux

n/2 _/2 T v

qr = qr e - 2n B v (T) sin0e dtd0

v v, @w

(E-26)

Substituting for q_u,0
W

from Eq. (E-17)

rT/2 --('rv --TV)/COS0 T n/2

+ _0 + e / e/ --(t--Tv)/COS0qr V = qru,0ee dO + 2_ B u(T) sin0e d0dt

0 0

T n/2

_0 T -(t-T )/cos0
- 2_ B (T) sin0e d0dt

0

(E-27)
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Again, in terms of exponential integrals

7/2
+ _ + --(TVe T )/COSe

qr = J0 qr e dev,e e

T T

/o+ 2u B v(T) E 2(t - Tv) dt - 27 B V(T) E 2(t - Tv) dt (E-28)

In accordance with the definition of Eq. (E-4) the net radiant heat

flux in the frequency interval dv is given by the difference of Eq. (E-28)

and Eq. (E-25). Upon combining terms

qr

T T

{e /O2 B V(T) E 2(t - T )dt - 2_ B V(T) E 2(T V -

T
M

t) dt

T

/o- 2nevwBv(Tw) E3(T ) - 4_(i - e w) E3(T ) Bv(T)E2(t)dt

TT/2 -- ( TVe- TV)/COS 6)/o"+ e dO

qr v , 0 e

n/2 -T /COS@

2(1 - evw) E3(T_) qrv+ ,0ee e dO (E-29)

The net radiation heat flux, qr' is obtained by integrating Eq. (E-29)

over all frequencies

qr = I qr dv

0 v

(_.-3o}
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4

This integration can be approximated by considering the entire range of v

to be subdivided into M spectral bands of width 6v m. The a and evw

are assumed to be frequency independent within a single band but to vary

from band to band and are thus designated as a m and emw , respectively.

The choice of the number of bands, M, and the frequency interval of each

band, 6Vm, can be made such as to approximate the actual av to a given

degree of accuracy. The qr for this smeared-band model is given by

M Vm+ 6 vm

qr qr

m=l Vm

(n-31)

It is convenient to define

Vm+6v m

f B v (T) dv

v m

Bm(T) = ® (E-32)

r

3 B v (T) dv

0

where

/=B v(T) dv = a__ T 4

0

(E-33)

The net radiant heat flux toward the surface at the nodal point i is then

given by

M

qri = _.

m=l

T T

me 4 /0 miT4Bm (T) ( Tmi
2o T Bm(T)E2(t- Tmi)dt - 2_ E 2 - t)dt

T
m.
1

T

/0m-2°emwT4Bm(T_E3(Tmi) - 4o(1 - emw)E3(Tmi) eT4Bm(T)E2(t)dt

qrv,0edV e -(Tme-Tmi)/c°s0- 2(1 - emw)E3(Tmi)e e

(_.-34)
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where from Eq. (E-9) 7
m.
l

is given by

 fyi
Tmi PKm dy

0

(_-35)

At the wall Eq. (E-34) simplifies to

qr
w

M

m=l

T

f me 4T Bm(T)E2(t)dt aemwT4Bm(T w)2a emw -

0

I Vm+SVm + 7 -T m /cose }
_ , qrv, dOOed_jemw e e

(E-36)

since Tm = 0 and E3(T m ) = 1/2.
w w

The incident flux at the boundary-layer edge can be a function of fre-

quency and the angles e and 9- Differentiating Eq. (E-3) with respect to

e while considering e < 7/2 and integrating over the frequency range 5_ m

yields

Vm+6Vm 27 Vm+SV m

J _',Oe '%
V m Vm

0 < e < 7/2

(E-37)

The integrations in this term with respect to _ and _ can be performed

a priori for each spectral band. The result is then substituted into Eq.

(E-34) and (E-35) where the integration with respect to e is performed.

The calculation of qr i proceeds as follows. Given the temperature

and particle densities across the boundary layer, the Tmi and Bm(Ti) ma-

trices are computed for each spectral band m and for a finite number of

points across the boundary-layer i (nodal points in the numerical solution

procedure). The integrations in Eqs. (E-34) and (E-35) are then performed

for each spectral band, and the contribution from each spectral band is

added to yield the qr i.
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APPENDIX F

A STUDY OF DIFFERENTIAL VERSUS INTEGRAL PROCEDURES

EMPLOYING IDENTICAL SPLINE-FIT APPROXIMATIONS

There are three basic aspects to the integral matrix solution procedure

described in this report: connected cubics (spline functions) are employed

to relate the primary dependent variables to the transverse coordinate _] ;

the differential equations are solved in integral form with a weighting

function which is unity between neighboring nodal points and zero elsewhere;

and Newton-Raphson iteration is utilized to solve the resulting set of linear

and nonlinear equations. The spline-fit approximation of the dependent

variables was a natural choice since smooth functions were desired to minimize

the number of nodal points and recent studies have shown spline functions to

be superior to single higher-order polynomials. Newton-Raphson iteration was

chosen in order to effect linearized coupling throughout the boundary layer.

However, the decision of whether or not to integrate and the choice of a

weighting factor necessitated some study. The results of these studies are

reported in this appendix.

As pointed out by Dorodnitsyn F-I, solution of the boundary-layer equations

in differential form is equivalent to an integral solution using the Dirac

delta function as the weighting function. The question at hand then resolves

down to the choice of weighting functions. There are three approaches here:

the Dirac delta function (differential approach), a step weighting function

such as that used by Pallone F-2, or a smooth weighting function across the

entire boundary layer such as that employed by Dorodnitsyn. F-I The primary

distinction between these three approaches is that the first takes an

infinitesimally small sample (restricted to the nodal points themselves), the

second samples over a portion of the boundary layer, and the third samples

over the entire boundary layer.

Parallel developments were made for the first two approaches for non-

similar incompressible boundary layers, the only distinction being the choice

of weighting function. The results of this study were inconclusive with

regard to accuracy, convergence stability, and the number of iterations

required to achieve convergence. In particular, it was found that the

accuracy depends more upon the distribution of the nodal points than upon

the size of the sample. Therefore the choice of weighting function was made

on the basis of algebraic simplicity which favored step weighting functions

over Dirac delta functions or smoothly varying functions such as those used

by Dorodnitsyn.
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In the remainder of this appendix, Newton-Raphson recurrence formulas

are presented for the nonsimilar incompressible momentum equation for the

integral and the differential approaches. Results are then compared for the

case of an incompressible boundary layer on a flat plate and for a nonsimilar

boundary layer with an adverse pressure gradient. Finally, the algebraic

complexity of the two approaches is discussed.

In the case of an incompressible boundary layer, the energy and species

conservation equations are not needed, and the transformed momentum equation

(Eq. (55)) reduces to

(ff" + -- + _(UH - f,2) _ 2 f' __f' - f" __fln _ f'2 d In = 0

(F-l)

The boundary layer at a given streamwise station is divided into N nodal

points, _i ' where i = 1 at the wall and N at the boundary-layer edge.

tr- IIn the integral approach, Eq. _,-_) is _-_v_e_ a_ constant _ between

neighboring nodes, _i-i and _i :

i i i

ff" d_ + _HH -i + _aHSn - e f'2d n - 2 f' __f' ="_f_----/-J--6,_II

-i l-i -i

i

ddlnaHin_ f+ 2 f'Sdq = 0 (F-2)

i-i

As discussed in the present report, the fi ' fi ' f'_ and f':' are expandedi' 1

about point i in terms of their _-derivatives by the use of Taylor series.

These series are truncated by considering the f't" to be constant between
1

_i and ni+ 1 . Thus, between each i and i+l the f is represented as

a quartic, the f' as a cubic, and the f" as a quadratic, whereas the f"' is

considered to vary linearly between each pair of _-stations, all of these

functions joining continuously at the nodal points. Utilizing the same pro-

cedure described in the present report for representing the streamwise deriva-

tives and evaluating the integrals which appear in Eq. (F-2), differentiation

yields the following Newton-Raphson recurrence formulas:
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A(_H + (i + d O ) f + dlf__ 1 + d2f£_ Af' + f' (i + d0),.\

C_H / Jn-i

Ii d iC_H_ -i + d2eH I f+ 2_H6_H - 2 + _ + d o - "_ _-2J[Xl_f' n

X Af ....I dleH_-i + d2_H_-21f
- f'X + "

+ X.Af" + X Af"' + 4 n-lJ _H
z n 3 n 2 /[ n 1 fnX2

- Z "' Z ^f,,, l

n'X3 [ n 3_fn 4 _ n-lJ

= - ERROR (F-3)

where the ERROR is given by the left-hand side of Eq. (F-2) evaluated in the

previous iteration and the XP 1 , XP 2 , XP 3 and XP 4 are defined by Eqs. (86),

the d O , d I and d 2 by Eqs. (88) or (89), and the ZP 1 , ZP 2 , ZP 3 and

ZP 4 by Eq. (94).

In the differential approach, Eq. (F-l) is solved at each nodal point i

without integration. Utilizing the same procedure for representing the

streamwise derivatives, differentiation yields the following Newton-Raphson

recurrence formulas:

[
f"(l + d o ) Af -[2_

+ L[f(l + d o ) + d I fL-i + d2 fL 2] Af" +
Af"'

- _H

dl_H_-i + d2_H£ 2 I]
I --

f' + dl fi-i + d2 f_-2 - 2f' aH _f'

= - ERROR

(F-4)

where the ERROR is given by the left-hand side of Eq. (F-I) evaluated in the

previous iteration.

Velocity profiles for incompressible flow over a flat plate as reported

by Howarth F-3 and as obtained with the above-described integral and matrix

procedures are presented in Table F-I in terms of the _ defined by Howarth

(which is _-times the _ defined in the present report for this problem).
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TABLE F-I

VELOCITY PROFILES FOR INCOMPRESSIBLE FLOW OVER A FLAT PLATE

AFTER HOWARTH COMPARED TO II-POINT INTEGRAL-MATRIX

AND DIFFERENTIAL-MATRIX SOLUTIONS

Velocity ratio

of Howarth Howarth F-3 integral-matrix Differential-matrix

0 0 0 0

.4 0.13277 0.1328 0.1322

.8 0.26471 0.2646 0.2636

1.2 0.39378 0.3937 0.3916

1.6 0.51676 0.5166 0.5139

2.0 0.62977 0.6297 0.6263

3.0 0.84605 0.8462 0.8431

4.0 0.95552 0.9553 0.9564

5.0 0.99155 0.9913 0.9938

6.0 0.99898 0.9990 0.9999

7.0 0.99992 0.9999 1.0000

8.0 1.00000 1.0000 1.0000

Identical ll-point nodal distributions were employed in the present calcula-

tions, namely, _ = 0, 0.2, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5, 4.4, 5.4 and 6.5.

The values of u/u e reported in Table F-I were then computed from the fl

and their derivatives by use of the Taylor series expansions (Eqs. (78)). It

can be seen that the integral-matrix solution agrees with Howarth's results

to four significant places and that the differential-matrix solution agrees

within a few tenths of a percent. Corresponding, the wall shear function,

f_ , was 0.3320 and 0.3308 for the integral and differential procedures,

respectively, compared to 0.33206 reported by Howarth.

The problem of linearly retarded flow (Ue/Ueo = 1 - ax with a - 1/8 ),

first studied by Howarth F-3 and later investigated by Smith and Clutter F-4,

among others, was also considered. Wall shear function, f"w' as obtained

with 6-point and 10-point integral and differential solutions are compared in

Table F-2 to results reported by Smith and Clutter. The latter results can

be considered as precise since they agree closely with those of other investi-

gators. They obtained this degree of accuracy by the use of small streamwise

spacing. The present results, on the other hand, were obtained with relatively

large streamwise spacing.(All stations considered in the present calculations

are shown whereas only a sampling of the smith and Clutter results are

presented. The fact that streamwise spacing is affecting the present results
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TABLE F-2

WALL SHEAR FUNCTION ALONG A FLAT PLATE WITH LINEARLY RETARDED FLOW,

u = 1 - x/8 , AFTER SMITH AND CLUTTER COMPARED TO 10-POINT AND 6-POINT
e

INTEGRAL-MATRIX AND DIFFERENTIAL-MATRIX SOLUTIONS

Type Ref. Differ- Integral Integral Differ- Integral Integral

F-4** ential ential

f

No. of

D-points*

Normalized

distance,

x

0

.01

.02

.04

.08

.12

.16

.20

.28

.36

.44

.52

,60

.68

.36

•80

•84

.88

.92

•94

.96

.98

1.00

1.02

1.04

1.06

i0 I0 I0 6 6 6

Shear function evaluated at the wall, f"
w

.4696 .4678 .4695 .4695

.4645 .4663 .4663 .4656 .4660 .4660

.4635 .4629 .4633 .4633

.4555 .4573 .4579 .4582

.4451 .4469 .4471 .4472 .4473 .4468

.4343 .4361 .4362 .4362

.4230 .4249 .4242 .4249 .4248 .4237

.4114 .4114 .4133 .4133 .4130

.3866 .3886 .3872 .3887 .3879 .3862

.3601 .3622 .3623 .3610

.3315 .3338 .3309 .3340 .3320 .3289

.3006 .3030 .3002 .3034 .3002 .2972

.2667 .2692 .2667 .2698 .2651 .2623

.2288 .2316 .2291 .2323 .2251 .2225

.1852 .1882 .1857 .1892 .1778 .1752

.1653 .1605 .1638 .1612 .1649 .1504 .1478

.1329 .1365 .1337 .1378 .1186 .1160

.ii00 .i000 .1042 .i010 .1059 .0809 .0784

.0736 .0506 .0582 .0519 .0615 .0350 .0330

non*** non .0162 non .0092

(extrap_ non non -.0132

-.0351

-.0549

-.0754

-.0929

-.1135

10-point (q -- 0, 0.2, 0.5, 0.9, 1.4, 2.0, 2.7, 3.5, 4.4, 5.4),

6-point (_- 0, 0.8, 1.8, 3.0, 4.4, 6.0).

Smith and Clutter results shown for representative streamwise stations only.

***nonconvergent
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can be seen by comparing the two 10-point integral solutions and the two

6-point integral solutions.) Looking first at the 10-point solutions, the

integral solution is slightly better except in the vicinity of x = .20

where the differential approach agrees with that of Smith and Clutter. In

the 6-point solutions, the integral and differential methods yield comparable

results until an x of 0.60 or so, after which the differential approach

yields better accuracy.

Since the comparison between the integral and differential approaches

was inconclusive with regard to accuracy and convergence considerations, it

was appropriate to consider algebraic complexity. Comparison of Eqs. (F-3)

and (F-4) indicates that the differential approach is algebraically simpler

for the incompressible nonsimilar boundary layer. However, in the multi-

component boundary layer the situation is strikingly reversed. All of the

complexities introduced by multicomponent thermodynamic and transport proper-

ties in the energy equation and elemental species equations appear in flux

divergence terms (see Eqs. (56) and (58)). Integration by a unity weighting

factor thus eliminates a derivative with respect to 7 so that it is not

necessary to evaluate flux derivatives in the evaluation of the ERRORS. The

fluxes, in turn, contain derivatives with respect to q (see, e.g., the qa

given by Eq. (50)). Thus, complete Newton-Raphson iteration requires evalua-

tion of second derivatives of state functions with respect to h and K_

as well as first derivatives (see Eqs. (129) and (132)). The differential

approach, on the other hand, would require the evaluation of second and third

derivatives of state functions with respect to h and Kk for full Newton-

Raphson iteration. Thus, integration between i and i-i is by far the most

desirable approach from the standpoint of algebraic simplicity.
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